Sellafield#Calder Hall nuclear power station

{{short description|Nuclear site in Cumbria, England}}

{{For|the company|Sellafield Ltd}}

{{Use British English|date=January 2013}}

{{Use dmy dates|date=November 2019}}

{{Infobox power station

| name = Sellafield nuclear site

| name_official = Sellafield Site. Known 1956-1971 as Windscale & Calder Works, known 1947-1956 as Windscale Works.

| image = File:Aerial view Sellafield, Cumbria - geograph.org.uk - 50827.jpg

| image_caption = 2005 view of the site

| coordinates = {{coord|54.4205|-3.4975|region:GB_type:landmark|display=inline,title}}

| country = United Kingdom

| location = Seascale, Cumbria

| owner = Nuclear Decommissioning Authority

| operator = Sellafield Ltd

| employees = 10,000+

| np_reactor_type = Magnox (Calder Hall)
AGR prototype (Windscale)

| commissioned = Windscale Piles (non-power generating): 1950
Calder Hall: 1956
Windscale AGR: 1962

| ps_units_decommissioned = Units taken out of service: Calder Hall: 4 x 60{{nbsp}}MWe (gross)
Windscale AGR: 1 x 36{{nbsp}}MWe.
Final decommissioning for complete site 2120

| ps_units_operational = No nuclear power generation since 2003.
Processes still active: spent fuel storage, waste processing and storage, and plant decommissioning.

| extra = {{gbmapping|NY034036}}

}}

Sellafield, formerly known as Windscale, is a large multi-function nuclear site close to Seascale on the coast of Cumbria, England. As of August 2022, primary activities are nuclear waste processing and storage and nuclear decommissioning. Former activities included nuclear power generation from 1956 to 2003, and nuclear fuel reprocessing from 1952 to 2022.

The licensed site covers an area of {{convert|265|ha}},NDA draft strategy, August 2020 and comprises more than 200 nuclear facilities and more than 1,000 buildings.Sellafield Ltd, annual report 2017-2018, retrieved Sept 2019 It is Europe's largest nuclear site and has the most diverse range of nuclear facilities in the world on a single site.Sellafield context plan, published May 2017 by assets.publishing.service.gov.uk, retrieved Sept 2019 The site's workforce size varies, and before the COVID-19 pandemic was approximately 10,000 people. The UK's National Nuclear Laboratory has its Central Laboratory and headquarters on the site.

Originally built as a Royal Ordnance Factory in 1942, the site briefly passed into the ownership of Courtaulds for rayon manufacture following World War II, but was re-acquired by the Ministry of Supply in 1947 for the production of plutonium for nuclear weapons which required the construction of the Windscale Piles and the First Generation Reprocessing Plant, and it was renamed "Windscale Works". Subsequent key developments have included the building of Calder Hall nuclear power station - the world's first nuclear power station to export electricity on a commercial scale to a public grid, the Magnox fuel reprocessing plant, the prototype Advanced Gas-cooled Reactor (AGR) and the Thermal Oxide Reprocessing Plant (THORP). Decommissioning projects include the Windscale Piles,{{Cite book |last=Kragh |first=Helge |url=https://archive.org/details/quantumgeneratio0000krag |title=Quantum Generations: A History of Physics in the Twentieth Century |publisher=Princeton University Press |year=1999 |isbn=978-0-691-09552-3 |location=Princeton NJ |pages=[https://archive.org/details/quantumgeneratio0000krag/page/286 286] |url-access=registration}} Calder Hall nuclear power station, and a number of historic reprocessing facilities and waste stores.

The site is owned by the Nuclear Decommissioning Authority (NDA) which is a non-departmental public body of the UK government. Following a period 2008–2016 of management by a private consortium, the site was returned to direct government control by making the Site Management Company, Sellafield Ltd, a subsidiary of the NDA. Decommissioning of legacy facilities, some of which date back to the UK's first efforts to produce an atomic bomb, is planned for completion by 2120 at a cost of £121{{nbsp}}billion.

Sellafield was the site in 1957 of one of the world's worst nuclear incidents. This was the Windscale fire which occurred when uranium metal fuel ignited inside Windscale Pile no.1. Radioactive contamination was released into the environment, which it is now estimated caused around 240 cancers in the long term, with 100 to 240 of these being fatal.{{cite news |last1=Black |first1=Richard |title=Fukushima – disaster or distraction? |url=https://www.bbc.co.uk/news/science-environment-12789749 |access-date=30 June 2020 |work=BBC News |date=18 March 2011 |archive-date=11 April 2020 |archive-url=https://web.archive.org/web/20200411003052/https://www.bbc.co.uk/news/science-environment-12789749 |url-status=live }}{{cite news |last1=Ahlstrom |first1=Dick |title=The unacceptable toll of Britain's nuclear disaster |url=https://www.irishtimes.com/news/the-unacceptable-toll-of-britain-s-nuclear-disaster-1.970400 |access-date=15 June 2020 |newspaper=The Irish Times |date=8 October 2007 |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025202227/https://www.irishtimes.com/news/the-unacceptable-toll-of-britain-s-nuclear-disaster-1.970400 |url-status=live }}{{cite news |last1=Highfield |first1=Roger |title=Windscale fire: 'We were too busy to panic' |url=https://www.telegraph.co.uk/news/science/science-news/3309842/Windscale-fire-We-were-too-busy-to-panic.html |access-date=15 June 2020 |work=The Telegraph |date=9 October 2007 |archive-url=https://web.archive.org/web/20200615223147/https://www.telegraph.co.uk/news/science/science-news/3309842/Windscale-fire-We-were-too-busy-to-panic.html |archive-date=15 June 2020 |url-status=live }} The incident was rated 5 out of a possible 7 on the International Nuclear Event Scale.

Site development

=Royal Ordnance Factory=

The site was established with the creation of Royal Ordnance Factory ROF Sellafield by the Ministry of Supply in 1942; built by John Laing & SonRitchie, p. 102 at the hamlet of Low Sellafield.{{PastScape |num=1075104 |desc=Royal Ordnance Factory Sellafield |access-date=21 August 2015}} The nearby sister factory, ROF Drigg, had been constructed in 1940, {{convert|3|mi|km|0}} to the south-east near the village of Drigg.{{PastScape |num=1075121 |desc=Royal Ordnance Factory Drigg |access-date=21 August 2015}} Both sites were classed as Explosive ROFs, producing high-explosive at ROF Drigg, and propellant at ROF Sellafield. They were built in this location to be remote from large centres of population because of the hazardous nature of the process, and to reduce the risk of World War II enemy air attack. There were also existing rail links, and a good supply of high quality water from Wastwater. Production ceased at both factories immediately following the defeat of Japan.

=Start of nuclear activity=

File:HD.15.003 (11824034284).jpg

{{main|Windscale Piles}}

After the War, the Sellafield site was briefly in the ownership of Courtaulds for development as a rayon factory, but was re-acquired by the Ministry of Supply for the production of plutonium for nuclear weapons. Construction of the nuclear facilities commenced in September 1947 and the site was renamed Windscale Works. The building of the nuclear plant was a huge construction project, requiring a peak effort of 5,000 workers. The two air-cooled and open-circuit, graphite-moderated Windscale reactors (the "Windscale Piles") and the associated First Generation Reprocessing Plant, producing the first British weapons grade plutonium-239, were central to the UK nuclear weapons programme of the 1950s.

Windscale Pile No.1 became operational in October 1950, just over three{{nbsp}}years from the start of construction, and Pile No.2 became operational in June 1951.

=Calder Hall power station=

File:Calder Hall, Queen opening.jpg officially opening Calder Hall nuclear power station on 17 October 1956]]

With the creation of the United Kingdom Atomic Energy Authority (UKAEA) in 1954, ownership of Windscale Works passed to the UKAEA. At this time the site was being expanded across the River Calder where four Magnox reactors were being built to create the world's first commercial-scale nuclear power station. This became operational in 1956 and was the world's first nuclear power station to export electricity on a commercial scale to a public grid. The whole site became known as "Windscale and Calder Works".

=British Nuclear Fuels Ltd (BNFL)=

Following the break-up of the UKAEA into a research division (UKAEA) and a newly created company for nuclear production British Nuclear Fuels Ltd (BNFL) in 1971, a major part of the site was transferred to BNFL ownership and management. In 1981 BNFL's Windscale and Calder Works was renamed Sellafield as part of a major reorganisation of the site and there was a consolidation of management under one head of the entire BNFL Sellafield site. The remainder of the site remained in the hands of the UKAEA and was still called Windscale.Cassidy, Nick, and Patrick Green. 1993. Sellafield: The contaminated legacy. London: Friends of the Earth.

=Reprocessing=

Sellafield was the centre of UK nuclear reprocessing operations, which separated the uranium and plutonium from minor actinides and fission products present in spent nuclear fuel.Openshaw, Stan, Steve Carver, and John Fernie. 1989. Britain's nuclear waste: Siting and safety. London: Bellhaven Press. The uranium could be used in the manufacture of new nuclear fuel, or in applications where its density was an asset. The plutonium was originally used for weapons, and later in the manufacture of mixed oxide fuel (MOX) for thermal reactors.

Reprocessing ceased on 17 July 2022, when the Magnox Reprocessing Plant completed its last batch of fuel after 58{{nbsp}}years of operation.{{cite web |url=https://www.gov.uk/government/news/job-done-sellafield-plant-safely-completes-its-mission |title=Sellafield plant safely completes its mission|website=www.gov.uk |access-date=20 July 2022}}{{title missing|date=September 2022}} In January 2025, the government announced that the 140 tonnes civil plutonium stockpile produced by reprocessing, originally considered a valuable asset, would be immobilised and eventually disposed of in a geological disposal facility, rather than used to produce MOX fuel which was evaluated as an uneconomic option.{{cite news |url=https://www.world-nuclear-news.org/articles/uk-opts-for-disposal-of-plutonium-inventory |title=UK opts for disposal of plutonium inventory |website=World Nuclear News |date=24 January 2025 |access-date=5 February 2025}}{{cite web |date=25 June 2014 |title=delegates focus on use of plutonium |url=http://www.whitehavennews.co.uk/news/delegates-focus-on-use-of-plutonium-1.1101586 |url-status=dead |archive-url=https://web.archive.org/web/20131204031912/http://www.whitehavennews.co.uk/news/delegates-focus-on-use-of-plutonium-1.1101586 |archive-date=4 December 2013 |publisher=Whitehavennews |df=dmy-all}}

Sellafield Site has had three separate fuel reprocessing facilities:

  1. First Generation (Windscale): 1951–1973 – production of Plutonium for weapons. 750{{nbsp}}tonnes fuel per year
  2. Magnox: 1964–2022 – Magnox national reactor fleet fuel reprocessing
  3. Thermal Oxide Reprocessing Plant (THORP): 1994–2018 – National AGR fleet oxide fuel reprocessing

Magnox and THORP had a combined annual capacity of nearly 2,300{{nbsp}}tonnes.

Despite the end of reprocessing, Sellafield is still the central location which receives and stores used fuel from the UK's fleet of gas cooled reactor stations.{{cite web | url=https://www.gov.uk/government/organisations/sellafield-ltd | title=Sellafield Ltd | date=23 June 2023 }}{{cite web | url=https://world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx | title=Processing of Used Nuclear Fuel - World Nuclear Association }}

The site has also processed overseas spent fuel from several countries under contract. There had been concern that Sellafield would become a repository for unwanted international nuclear material. However, contracts agreed since 1976 with overseas customers required that all High Level Waste be returned to the country of origin. The UK retained low and intermediate level waste resulting from that reprocessing, and in substitution shipped out a radiologically equivalent amount of its own HLW. The policy was designed to be environmentally neutral by expediting, and reducing the volume, of shipments.{{cite web |title=INTERMEDIATE LEVEL RADIOACTIVE WASTE SUBSTITUTION |url=http://www.dti.gov.uk/files/file30058.pdf |url-status=dead |archive-url=https://web.archive.org/web/20061209060043/http://www.dti.gov.uk/files/file30058.pdf |archive-date=9 December 2006 |access-date=23 August 2006 |website=DTI |df=dmy-all}}

=Decommissioning=

Nuclear decommissioning is the process whereby a nuclear facility is dismantled to the point that it no longer requires measures for radiation protection.{{Cite journal|date=2020-09-01|title=Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning|journal=Energy Policy|language=en|volume=144|pages=111677|doi=10.1016/j.enpol.2020.111677|issn=0301-4215|doi-access=free|last1=Invernizzi|first1=Diletta Colette|last2=Locatelli|first2=Giorgio|last3=Velenturf|first3=Anne|last4=Love|first4=Peter ED.|last5=Purnell|first5=Phil|last6=Brookes|first6=Naomi J.|hdl=11311/1204791|hdl-access=free}} Sellafield's highest priority nuclear decommissioning challenges are mainly the legacy of the early nuclear research and nuclear weapons programmes.{{Cite news |last=McKie |first=Robin |author-link=Robin McKie |date=19 April 2009 |title=Sellafield: the most hazardous place in Europe |work=The Observer |url=https://www.theguardian.com/environment/2009/apr/19/sellafield-nuclear-plant-cumbria-hazards |access-date=9 June 2020 |archive-date=12 November 2019 |archive-url=https://web.archive.org/web/20191112155110/https://www.theguardian.com/environment/2009/apr/19/sellafield-nuclear-plant-cumbria-hazards |url-status=live }} There is a considerable inventory of buildings which have ceased operating but are in "care and maintenance" awaiting final decommissioning.

The 2018–2021 NDA business plan for Sellafield decommissioning is focused on older legacy high hazard plants and includes the following key activities in the area of Legacy Ponds and Silos;NDA Business Plan 2018–2021, retrieved Sept 2019

  • Pile Fuel Storage Pond (PFSP): Sustain sludge exports and prepare for de-watering
  • Pile Fuel Cladding Silo (PFCS): Complete commissioning of Box Encapsulation Plant to receive silo contents, and begin retrievals.
  • First Generation Magnox Storage Pond (FGMSP): Continue to retrieve fuel and sludge.
  • Magnox Swarf Storage Silo (MSSS): Begin retrievals from the silo.

Also:

  • Continue demolition of Pile No.1 chimney

Defuelling and removal of most buildings at Calder Hall is expected to take until 2032, followed by a care and maintenance phase from 2033 to 2104. Demolition of reactor buildings and final site clearance is planned for 2105 to 2114.{{cite web |date=February 2011 |title=The 2010 UK Radioactive Waste Inventory: Main Report |url=http://www.nda.gov.uk/ukinventory/documents/Reports/upload/2010-UK-Radioactive-Waste-Inventory-Main-Report.pdf |url-status=dead |archive-url=https://web.archive.org/web/20120325081518/http://www.nda.gov.uk/ukinventory/documents/Reports/upload/2010-UK-Radioactive-Waste-Inventory-Main-Report.pdf |archive-date=25 March 2012 |access-date=22 May 2012 |publisher=Nuclear Decommissioning Agency/Department of Energy & Climate Change}}

As of March 2021, the NDA reported that they had:{{Cite web |title=Ponds and Silos at Sellafield |url=https://www.gov.uk/government/case-studies/ponds-and-silos-at-sellafield |access-date=2023-01-24 |website=GOV.UK |language=en}}

  • Removed significant quantities of bulk fuel and over 300{{nbsp}}tonnes of solid intermediate level waste (ILW) from the PFSP
  • Removed more than {{convert|100|m3}} of sludge from the FGMSP
  • Installed the first of the 400-tonne silo emptying plants in the MSSS. The retrievals started in June 2022;{{cite news | url = https://www.world-nuclear-news.org/Articles/Waste-removal-starts-at-Sellafield-facility | work = World Nuclear News | title = Waste removal starts at Sellafield facility | date = 10 June 2002 | access-date = 9 January 2023}} it is estimated this phase will continue for 20{{nbsp}}years.
  • Created new access and equipment installed for waste retrieval from the PFCS

In August 2023, work started to retrieve waste from the PFCS, which had been created in the 1950s to store cladding from used Windscale Piles nuclear fuel, described as "a momentous milestone in the decommissioning story at Sellafield as the first batch of waste was successfully retrieved from the site’s oldest waste store" and "one of the most complex and difficult decommissioning challenges in the world".{{cite news |url=https://www.neimagazine.com/news/newssellafield-begins-waste-removal-from-70-year-old-silo-11081164 |title=Sellafield begins waste removal from 70-year-old silo |publisher=Nuclear Engineering International |date=17 August 2023 |access-date=24 August 2023}}

== Management model following the Energy Act 2004==

Following ownership by BNFL, since 1 April 2005 the site has been owned by the Nuclear Decommissioning Authority (NDA), a non-departmental public body of the UK government created by the Energy Act 2004 as part of government policy to introduce competition into the nuclear industry to better control decommissioning costs. In 2008, the NDA awarded Nuclear Management Partners (NMP) the position of Parent Body Organisation of Sellafield Ltd under their standard management model for NDA sites; this gave them complete responsibility for operating and managing the NDA-owned assets, the direct workforce and the site. This consortium, composed of US company URS, British company AMEC and French company Areva, was initially awarded a contract for five{{nbsp}}years, with extension options to 17{{nbsp}}years, and in November 2008, NMP took over management of the site.{{cite web |title=NMP Company Profile |url=http://www.nuclearmanagementpartners.com/about-company-profile.html |url-status=dead |archive-url=https://web.archive.org/web/20100804025857/http://www.nuclearmanagementpartners.com/about-company-profile.html |archive-date=4 August 2010 |access-date=19 June 2010 |publisher=Nuclear Management Partners |df=dmy}} In October 2008, it was revealed that the British government had agreed to issue the managing body for Sellafield an unlimited indemnity against future accidents; according to The Guardian, "the indemnity even covers accidents and leaks that are the consortium's fault." The indemnity had been rushed through prior to the summer parliamentary recess without notifying parliament.The Guardian, 27 October 2008, [https://www.theguardian.com/environment/2008/oct/27/sellafield-deal-nuclear-economy MP's anger as state bears cost of any Sellafield disaster] {{Webarchive|url=https://web.archive.org/web/20170305004958/https://www.theguardian.com/environment/2008/oct/27/sellafield-deal-nuclear-economy |date=5 March 2017 }}

On 13 January 2015, the NDA announced that NMP would lose the management contract for Sellafield as the "complexity and technical uncertainties presented significantly greater challenges than other NDA sites", and the site was therefore "less well suited" to the NDA's existing standard management model.{{cite web |title=UK to change way Sellafield is managed |url=http://www.world-nuclear-news.org/C-UK-to-change-way-Sellafield-is-managed-13011501.html |access-date=4 July 2015 |publisher=World Nuclear News |archive-date=5 July 2015 |archive-url=https://web.archive.org/web/20150705144903/http://www.world-nuclear-news.org/C-UK-to-change-way-Sellafield-is-managed-13011501.html |url-status=live }} The new structure, which came into effect on 1 April 2016, saw Sellafield Ltd. become a subsidiary of the NDA.

==Decommissioning cost estimates==

class="wikitable" style="text-align:center; margin-left:10px; float:right;"

|+ NDA increasing estimates of remaining cost of decommissioning and clean-up{{Cite report |url=http://www.parliament.uk/documents/commons-committees/public-accounts/Progress-on-Sellafield-Site.pdf |title=Nuclear Decommissioning Authority – Progress on the Sellafield site: an update |date=March 2015 |publisher=National Audit Office |access-date=16 March 2015 |archive-date=2 April 2015 |archive-url=https://web.archive.org/web/20150402121707/http://www.parliament.uk/documents/commons-committees/public-accounts/Progress-on-Sellafield-Site.pdf |url-status=live }}

rowspan=2 | Year of
estimate
Sellafield*Other NDA sitesTotal
colspan=3 | (£ billions, discounted)
2006–0721.911.733.6
2007–0824.815.940.7
2009–1025.219.945.1
2010–1132.716.549.2
2011–1237.215.652.9
2012–1342.016.958.9
2013–1447.917.064.9
2014–1553.212.565.7[https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/512836/Nuclear_Decommissioning_Authority_Strategy_effective_from_April_2016.pdf Nuclear Decommissioning Authority: Strategy], Appendix B, p. 129. March 2016.

[https://www.gov.uk/government/consultations/nuclear-decommissioning-authority-draft-strategy Via]

2015–16117.443.3160.7
2018–1997.021.3118.3
colspan=4 | * Sellafield includes Calder Hall and Windscale,
and Energy Trading

File:Chart forecast costs clean up Sellafield vs non-Sellafield from 2005.jpg

Sellafield accounts for most of the NDA's decommissioning budget and the increases in future cost estimates. Its share (discounted, including Calder Hall and Windscale; excluding Capenhurst) increased from 21.9 billion (65%) in 2007[https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/248481/0827.pdf Annual Report and Accounts 2007/08.] NDA, July 2008 (2.6 MB). See table on p. 29. to 97.0 billion (82%) in 2019.[https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy#latest-estimate Nuclear Provision: the cost of cleaning up Britain’s historic nuclear sites.] NDA, Update 4 July 2019

In 2013, the UK Government Public Accounts Committee issued a critical report stating that NMP had failed to reduce costs and delays. Between 2005 and 2013, the annual costs of operating Sellafield had increased from £900{{nbsp}}million to about £1.6{{nbsp}}billion. The estimated lifetime undiscounted cost of dealing with the Sellafield site increased to £67.5{{nbsp}}billion.{{Cite news |date=4 February 2013 |title=Sellafield clean-up cost reaches 67.5bn, says report |publisher=BBC |url=https://www.bbc.co.uk/news/uk-england-cumbria-21298117 |access-date=19 February 2013 |archive-date=8 February 2013 |archive-url=https://web.archive.org/web/20130208150902/http://www.bbc.co.uk/news/uk-england-cumbria-21298117 |url-status=live }}{{Cite news |last=Terry Macalister |date=4 February 2013 |title=Sellafield management sharply criticised by Commons committee |work=The Guardian |url=https://www.theguardian.com/business/2013/feb/04/sellafield-management-criticised-commons-committee |access-date=19 February 2013 |archive-date=8 January 2014 |archive-url=https://web.archive.org/web/20140108145738/http://www.theguardian.com/business/2013/feb/04/sellafield-management-criticised-commons-committee |url-status=live }}{{Cite report |url=https://publications.parliament.uk/pa/cm201213/cmselect/cmpubacc/746/746.pdf |title=Nuclear Decommissioning Authority: Managing risk at Sellafield |date=23 January 2013 |publisher=House of Commons |access-date=19 February 2013 |work=Committee of Public Accounts |archive-date=4 February 2013 |archive-url=https://web.archive.org/web/20130204141443/http://www.publications.parliament.uk/pa/cm201213/cmselect/cmpubacc/746/746.pdf |url-status=live }} NMP management was forced to apologise after projected clean-up costs passed the £70{{nbsp}}billion mark in late 2013.{{Cite news |last=Macalister |first=Terry |date=4 December 2013 |title=Sellafield bosses forced to say sorry over £70bn-plus cleanup costs |work=theguardian.com |url=https://www.theguardian.com/environment/2013/dec/04/sellafield-boss-sorry-over-cleanup-costs |access-date=5 December 2013 |archive-date=5 December 2013 |archive-url=https://web.archive.org/web/20131205175834/http://www.theguardian.com/environment/2013/dec/04/sellafield-boss-sorry-over-cleanup-costs |url-status=live }} In 2014, the final undiscounted decommissioning cost projection for Sellafield was increased to £79.1{{nbsp}}billion,{{Cite news |last=Gosden |first=Emily |date=23 June 2014 |title=Britain's nuclear clean-up bill soars to £110bn |work=The Telegraph |url=https://www.telegraph.co.uk/finance/newsbysector/energy/10921309/Britains-nuclear-clean-up-bill-soars-to-110bn.html |access-date=13 January 2015 |archive-date=13 January 2015 |archive-url=https://web.archive.org/web/20150113120111/http://www.telegraph.co.uk/finance/newsbysector/energy/10921309/Britains-nuclear-clean-up-bill-soars-to-110bn.html |url-status=live }} and in 2015 to £117.4{{nbsp}}billion.{{cite web |date=1 September 2016 |title=Nuclear Provision: the cost of cleaning up Britain's historic nuclear sites |url=https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy#latest-estimate |access-date=26 February 2017 |publisher=NDA |archive-date=26 February 2017 |archive-url=https://web.archive.org/web/20170226212752/https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy#latest-estimate |url-status=live }} The annual operating cost was projected to be £2{{nbsp}}billion in 2016.{{Cite news |date=6 January 2016 |title=UK decommissioning agency lays out plans to 2019 |publisher=World Nuclear News |url=http://www.world-nuclear-news.org/C-UK-decommissioning-agency-lays-out-plans-to-2019-06011501.html |access-date=26 February 2017 |archive-date=26 February 2017 |archive-url=https://web.archive.org/web/20170226212856/http://www.world-nuclear-news.org/C-UK-decommissioning-agency-lays-out-plans-to-2019-06011501.html |url-status=live }} In 2018, it was revealed that the cost could be £121{{nbsp}}billion by 2120.[https://www.independent.co.uk/climate-change/news/sellafield-nuclear-power-plant-decommission-overspend-delays-budget-report-a8609671.html Sellafield nuclear decommissioning work ‘significantly’ delayed and nearly £1bn over budget, report reveals.] Independent, 31 Oct 2018. [https://web.archive.org/web/20191215143808/https://www.independent.co.uk/environment/sellafield-nuclear-power-plant-decommission-overspend-delays-budget-report-a8609671.html Archived]

The cost does not include the costs for future geological disposal (GDF). These include research, design, construction, operation and closure. The undiscounted lifetime costs for a GDF were estimated £12.2 billion in 2008. The NDA's share of this is £10.1 billion, which results in a discounted amount of about £3.4 billion.,p. 27

Major plants

=Windscale Piles=

File:Storm Clouds over Sellafield - geograph.org.uk - 330062.jpg

{{main|Windscale Piles}}

Following the decision taken by the British government in January 1947 to develop nuclear weapons, Sellafield was chosen as the location of the plutonium production plant, consisting of the Windscale Piles and accompanying reprocessing plant to separate plutonium from the spent nuclear fuel. Unlike the early US nuclear reactors at Hanford, which consisted of a graphite core cooled by water, the Windscale Piles consisted of a graphite core cooled by air. Each pile contained almost 2,000{{nbsp}}tonnes (1,968{{nbsp}}L/T) of graphite, and measured over {{convert|7.3|m}} high by {{convert|15.2|m}} in diameter. Fuel for the reactor consisted of rods of uranium metal, approximately {{convert|30|cm|abbr=in}} long by {{convert|2.5|cm|abbr=in}} in diameter, and clad in aluminium.{{cite web |last=George Coupe |date=14 May 2004 |title=Getting to the core issue |url=http://www.theengineer.co.uk/Articles/267995/Getting+to+the+core+issue.htm |url-status=dead |archive-url=https://web.archive.org/web/20080905065400/http://www.theengineer.co.uk/Articles/267995/Getting+to+the+core+issue.htm |archive-date=5 September 2008 |access-date=23 October 2008 |publisher=The Engineer}}

The initial fuel was loaded into the Windscale Piles in July 1950.{{cite web |last=Sutyagin |first=Igor |year=1996 |title=The Role of Nuclear Weapons And Its Possible Future Missions |url=http://www.nato.int/acad/fellow/94-96/sutyagin/01-03.htm |access-date=23 October 2008 |publisher=NATO |pages=I.3. The Great Britain |archive-date=17 September 2008 |archive-url=https://web.archive.org/web/20080917123858/http://www.nato.int/acad/fellow/94-96/sutyagin/01-03.htm |url-status=live }}{{cite web |last=unattributed |date=n.d. |title=Sellafield Ltd Timeline |url=http://sellafieldsites.co.uk/page/about-us/sellafield-ltd-timeline |url-status=dead |archive-url=https://web.archive.org/web/20081005090917/http://sellafieldsites.co.uk/page/about-us/sellafield-ltd-timeline |archive-date=2008-10-05 |access-date=23 October 2008 |publisher=Sellafield Ltd}} By July 1952 the separation plant was being used to separate plutonium and uranium from spent fuel.{{Citation needed|date=January 2021}}

On 10 October 1957, the Windscale Piles were shut down following a fire in Pile 1 during a scheduled graphite annealing procedure. The fire badly damaged the pile core and released an estimated 750{{nbsp}}terabecquerels (20,000{{nbsp}}curies) of radioactive material, including 22{{nbsp}}TBq of Cs-137 and 740{{nbsp}}TBq of I-131 into the shafts.{{Cite journal |last=F. R. Farmer, J. R. Beattie |year=1976 |title=Nuclear Power Reactors and the Evaluation of Population Hazards |url=https://books.google.com/books?id=etWjBQAAQBAJ |journal=Advances in Nuclear Science and Technology |location=New York |publisher=Academic Press |volume=9 |pages=1–69 |isbn=9781483215662 |editor=Ernest J. Henley, Jeffery Lewins |access-date=30 August 2020 |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025202119/https://books.google.com/books?id=etWjBQAAQBAJ |url-status=live }} Thanks to innovative filters installed by Nobel laureate Sir John Cockcroft 95% of the material was captured.{{cite web|last=Leatherdale|first=Duncan|title=Windscale Piles: Cockcroft's Follies avoided nuclear disaster|url=https://www.bbc.co.uk/news/uk-england-cumbria-29803990|date=4 November 2014|publisher=BBC|access-date=12 August 2015|archive-date=14 August 2015|archive-url=https://web.archive.org/web/20150814001801/http://www.bbc.co.uk/news/uk-england-cumbria-29803990|url-status=live}}{{cite web |last=Leatherdale |first=Duncan |date=4 November 2014 |title=Windscale Piles: Cockcroft's Follies avoided nuclear disaster |url=https://www.bbc.co.uk/news/uk-england-cumbria-29803990 |access-date=12 August 2015 |publisher=BBC |archive-date=14 August 2015 |archive-url=https://web.archive.org/web/20150814001801/http://www.bbc.co.uk/news/uk-england-cumbria-29803990 |url-status=live }} As a precautionary measure, milk from surrounding farming areas was destroyed. However, no residents from the surrounding area were evacuated or informed of the danger of the radiation leakage. It is now believed that there have been 100 to 240 cancer deaths as a result of the release of radioactive material. Following the fire, Pile 1 was unserviceable, and Pile 2, although undamaged by the fire, was shut down as a precaution.

In the 1990s, the United Kingdom Atomic Energy Authority started to implement plans to decommission, disassemble and clean up both piles. In 2004, Pile 1 still contained about 15{{nbsp}}tonnes (14.76{{nbsp}}L/T) of uranium fuel, and final completion of the decommissioning is not expected until at least 2037.

In 2014, radioactive sludge in the Pile Fuel Storage Pond (PFSP), built between 1948 and 1952, started to be repackaged in drums to reduce the "sludge hazard" and to allow the pond to be decommissioned.{{Cite news |date=12 July 2014 |title=Sellafield's oldest nuclear waste being 'repackaged' |publisher=BBC |url=https://www.bbc.co.uk/news/uk-england-cumbria-28278238 |access-date=13 July 2014 |archive-date=13 July 2014 |archive-url=https://web.archive.org/web/20140713042254/http://www.bbc.co.uk/news/uk-england-cumbria-28278238 |url-status=live }}{{Cite news |date=12 June 2014 |title=Sellafield's oldest nuclear storage pond to be decommissioned |publisher=BBC |url=https://www.bbc.co.uk/news/uk-england-cumbria-27812167 |access-date=13 July 2014 |archive-date=13 November 2014 |archive-url=https://web.archive.org/web/20141113132429/http://www.bbc.co.uk/news/uk-england-cumbria-27812167 |url-status=live }} Decommissioning will require retrieval of sludge and solids, prior to dewatering and deconstruction, with retrievals planned for completion in 2016.{{cite web |title=Risk & Hazard Reduction: Pile Fuel Storage Pond |url=http://www.sellafieldsites.com/solution/risk-hazard-reduction/pile-fuel-storage-pond/the-plan/ |url-status=dead |archive-url=https://web.archive.org/web/20150706014607/http://www.sellafieldsites.com/solution/risk-hazard-reduction/pile-fuel-storage-pond/the-plan/ |archive-date=6 July 2015 |access-date=4 July 2015 |publisher=Sellafield Ltd. |df=dmy-all}}

=First Generation Reprocessing Plant=

The first generation reprocessing plant was built to extract the plutonium from spent fuel to provide fissile material for the UK's atomic weapons programme, and for exchange with the United States through the US-UK Mutual Defence Agreement.{{cite web|url=http://permanent.access.gpo.gov/websites/osti.gov/www.osti.gov/html/osti/opennet/document/press/pc29.html|title=Additional Information Concerning Underground Nuclear Weapon Test of Reactor-Grade Plutonium|publisher=US Department of Energy|access-date=15 March 2007|date=June 1994|archive-date=8 August 2014|archive-url=https://web.archive.org/web/20140808040625/http://permanent.access.gpo.gov/websites/osti.gov/www.osti.gov/html/osti/opennet/document/press/pc29.html|url-status=live}}

The Butex process was used (a forerunner to the more efficient Purex process) "Reminiscences of an atom pioneer". H.G. Davey, Works General Manager Windscale and Calder Works 1947-1958. Edited, Margaret Gowing, published Ca 1960 UKAEA, Risley, Lancs. and the plant operated from 1951 until 1964, with an annual capacity of 300{{nbsp}}tonnes (295{{nbsp}}L/T) of pile spent fuel, or 750{{nbsp}}tonnes (738{{nbsp}}L/T) of low burn-up fuel. It was first used to reprocess fuel from the Windscale Piles but was later repurposed to process fuel from UK Magnox reactors. Following the commissioning of the dedicated Magnox Reprocessing Plant, it became a pre-handling plant to allow oxide fuel to be reprocessed in the Magnox reprocessing plant. It was closed in 1973 after a violent reaction within the plant contaminated the entire plant and 34 workers with ruthenium-106.{{cite web|url=http://www.bellona.no/en/energy/nuclear/sellafield/wp_5-2001/21738.html |title=Reprocessing plant B204 |access-date=7 January 2006 |url-status=dead |archive-url=https://web.archive.org/web/20051124164632/http://www.bellona.no/en/energy/nuclear/sellafield/wp_5-2001/21738.html |archive-date=24 November 2005 }}{{cite web |title=Risk & Hazard Reduction: First Generation Reprocessing Plants |url=http://www.sellafieldsites.com/solution/risk-hazard-reduction/first-generation-reprocessing-plants/ |url-status=dead |archive-url=https://web.archive.org/web/20150706003047/http://www.sellafieldsites.com/solution/risk-hazard-reduction/first-generation-reprocessing-plants/ |archive-date=6 July 2015 |access-date=4 July 2015 |publisher=Sellafield Ltd. |df=dmy-all}}

=Magnox Reprocessing Plant=

{{Main|Magnox Reprocessing Plant}}

In 1964, the Magnox reprocessing plant came on stream to reprocess spent nuclear fuel from the national Magnox reactor fleet.{{cite web |title=History of Sellafield |url=http://www.sellafield.com/content.php?pageID=112&decade=1960 |access-date=21 August 2006 |website=Sellafield Web Page |archive-date=16 July 2011 |archive-url=https://web.archive.org/web/20110716035049/http://www.sellafield.com/content.php?pageID=112&decade=1960 |url-status=live }} The plant used the "plutonium uranium extraction" (Purex) method for reprocessing spent fuel, with tributyl phosphate in odourless kerosene and nitric acid as extraction agents. The Purex process produces uranium, plutonium and fission products as separated chemical output streams.{{cite web|url=http://ieer.org/wp/wp-content/uploads/1997/01/no-2.pdf|title=The International Civilian Reprocessing Business|work=Energy and Security|publisher=Institute for Energy and Environmental Research|first=Frans|last=Berkhout|year=1997|access-date=10 May 2015|archive-date=14 December 2015|archive-url=https://web.archive.org/web/20151214131534/http://ieer.org/wp/wp-content/uploads/1997/01/no-2.pdf|url-status=live}}

Magnox fuel has to be reprocessed in a timely fashion since the cladding corrodes if stored underwater, and routes for dry storage have not yet been proven, so it has been necessary to keep the plant running to process all the Magnox fuel inventory.{{cite web |title=RWMAC's Advice to Ministers on the Radioactive Waste Implications of Reprocessing |url=http://www.defra.gov.uk/rwmac/reports/reprocess/16.htm |url-status=dead |archive-url=https://web.archive.org/web/20060819040238/http://www.defra.gov.uk/rwmac/reports/reprocess/16.htm |archive-date=19 August 2006 |access-date=21 August 2006 |website=RWMAC |df=dmy}}

Magnox fuel reprocessing ceased on 17 July 2022, when the reprocessing plant completed its last batch of fuel after 58{{nbsp}}years of operation. A total of 55,000{{nbsp}}tonnes of fuel had been processed during those years.

=The First Generation Magnox Storage Pond (FGMSP)=

File:FGMSP Skips.jpg

This was built to support reprocessing of fuel from UK Magnox power stations through the Magnox Reprocessing Plant.{{cite web |author1=Julian Turner |title=Making Sellafield safe: counting the cost of nuclear decommissioning |url=https://www.power-technology.com/features/featuremaking-sellafield-safe-counting-the-cost-of-nuclear-decommissioning-4255839/?cf-view |website=Power Technology |access-date=5 December 2023 |date=1 May 2014}} It was initially planned to be used to keep fuel rods in for three months before they were reprocessed, but was used for operations between 1959 until 1985.{{cite web |author1=Martin Forwood |title=The Legacy of Reprocessing in the United Kingdom |url=https://fissilematerials.org/library/rr05.pdf |website=International Panel on Fissile Materials |access-date=5 December 2023 |date=July 2008|page=24}} The pond is {{convert|20|m|abbr=on}} wide, {{convert|150|m|abbr=on}} long and {{convert|6|m|abbr=on}} deep. Originally called B30 (and nicknamed 'Dirty 30'), the pond was renamed in 2018.{{cite web |author1=Alex Lawson |author2=Anna Isaac |title=‘Dirty 30’ and its toxic siblings: the most dangerous parts of the Sellafield nuclear site |url=https://www.theguardian.com/business/2023/dec/05/dirty-30-dangerous-sellafield-nuclear-site-ponds-safety-fears |website=The Guardian |access-date=5 December 2023 |date=5 December 2023}}

As of 2014, the FGMSP remains as a priority decommissioning project. As well as nuclear waste, the pond holds about {{convert|1200|m3}} of radioactive sludge of unknown characteristics and {{convert|14000|m3}} of contaminated water.{{Cite news |date=22 January 2014 |title=The cold probe for sampling at Sellafield |publisher=Nuclear Engineering International |url=http://www.neimagazine.com/features/featurethe-cold-probe-4163473/ |access-date=8 February 2014 |archive-date=22 February 2014 |archive-url=https://web.archive.org/web/20140222014515/http://www.neimagazine.com/features/featurethe-cold-probe-4163473/ |url-status=live }} Decommissioning requires retrieval of the radioactive sludge into a newly built Sludge Packaging Plant, as well as fuel and skip retrieval. Completion of this will allow the dewatering and dismantling of the remaining structure.

Future work will immobilise the sludge for long-term storage, and process solids through the Fuel Handling Plant for treatment and storage.{{cite web |title=Risk & Hazard Reduction: First Generation Magnox Storage Pond |url=http://www.sellafieldsites.com/solution/risk-hazard-reduction/first-generation-magnox-storage-pond/solution/ |url-status=dead |archive-url=https://web.archive.org/web/20150706001945/http://www.sellafieldsites.com/solution/risk-hazard-reduction/first-generation-magnox-storage-pond/solution/ |archive-date=6 July 2015 |access-date=4 July 2015 |publisher=Sellafield Ltd. |df=dmy-all}}

=Magnox Swarf Storage Silo (MSSS)=

File:261102792.jpg.gallery.jpg

The Magnox Swarf Storage Silo is a large building on the Sellafield Site which contains intermediate level fuel cladding swarf waste arising from reprocessing Magnox reactor fuel. Once expended fuel was removed from the Magnox reactors, the magnesium cladding was removed prior to the chemical processing of the fuel rod. To accomplish this, the fuel can was fed through a machine known as a "decanner" which stripped the cladding off the inner rod creating the swarf of broken magnesium alloy cladding as a waste product.

Since the start of commercial Magnox reprocessing in 1964 (the same year MSSS began operations), this waste was deposited into individual water-filled compartments within the MSSS. As they became full, more were added between the 1960s and 1983 totalling 22 compartments. In the early 1990s, the wet storage of this waste was no longer seen as the most effective way to store the material, and in later years was replaced with a dry storage method. The long-term storage and subsequent degradation of the magnesium alloy swarf in water causes an exothermic reaction which releases hydrogen gas. Normal operating procedures and overall design of the silo allowed for hydrogen gas to be safely vented before it could accumulate, and the heat can be removed through re-circulation of the water. The Magnox Swarf Storage Silo ceased being filled in 2000.{{cite conference |url=https://asmedigitalcollection.asme.org/ICEM/proceedings-abstract/ICEM2011/54983/67/355305 |title=Magnox Swarf Storage Silo Liquor Effluent Management: Sellafield Site, Cumbria, UK |first=Stephen |last=Le Clere |publisher=American Society of Mechanical Engineers |conference=14th International Conference on Environmental Remediation and Radioactive Waste Management |location=Reims, France |date=17 August 2012 |pages=67–75 |doi=10.1115/ICEM2011-59271 |access-date=27 September 2022}}

Many of the historic Sellafield operating practices have been superseded by better and safer alternatives.{{cite web|url=https://www.itigroup.co.uk/case-studies/sellafield-magnox-swarf-storage-silo-liquor-level-management/ |title=Sellafield Magnox Swarf Storage Silo Liquor Level Management - ITI |publisher=Itigroup.co.uk |date= |accessdate=2022-06-11}} Consequently, since 2000 the Magnox Encapsulation Plant on site has been responsible for the safe processing and dry storage of Magnox cladding swarf.{{cite web|url=https://www.youtube.com/watch?v=qQwky909RVQ |title=The Magnox Swarf Storage Silo: Making our most hazardous facility safer |publisher=YouTube |date=2019-06-21 |accessdate=2022-06-11}} This still left the problem of removing waste material that has been stored in hazardous conditions in the MSSS. To accomplish this complex task, Sellafield Ltd has partnered with commercial firms to design, construct and operate a remotely operated waste retrieval facility called the Silo Emptying Plant (SEP). This is designed to retrieve waste from the MSSS which will be processed in other specially designed site facilities, and then placed in interim storage at Sellafield. Longer term it is hoped such waste would be consigned to a deep geological repository for permanent storage.{{cite web |url=https://www-news.iaea.org/ErfView.aspx?mId=f35a2320-44dc-49d7-a425-ed7714b77f69 |title=Loss of liquor from the Magnox Swarf Storage Silo original building primary containment |date=6 January 2020 |website=IAEA}} The radioactive inventory and lack of modern standards in the silo has made it the most complicated and highest-priority mission in the NDA estate nationally.

Preparations for removing the 11,000m3 of historic waste from the silos and storing safely have taken over 20{{nbsp}}years.{{Cite web |title=A step forward for Sellafield's most hazardous building |url=https://www.gov.uk/government/news/a-step-forward-for-sellafields-most-hazardous-building |access-date=2023-01-24 |website=GOV.UK |language=en}}

On 10 June 2022, Sellafield Ltd announced the commencement of waste retrievals which will take approximately 20{{nbsp}}years. Once this radiological hazard has been removed, the MSSS structure can be demolished.

=Calder Hall nuclear power station=

{{Main|Calder Hall nuclear power station}}

File:Calder Hall nuclear power station (11823864155).jpg

Calder Hall was first connected to the grid on 27 August 1956 and officially opened by Queen Elizabeth II on 17 October 1956.{{cite web |title=History of Sellafield |url=http://www.sellafield.com/content.php?pageID=112&decade=1950 |access-date=21 August 2006 |website=Sellafield Web Page |archive-date=16 July 2011 |archive-url=https://web.archive.org/web/20110716035014/http://www.sellafield.com/content.php?pageID=112&decade=1950 |url-status=live }}{{Cite AV media |url=http://www.britishpathe.com/record.php?id=32422 |title=The Atom Joins the Grid |date=22 October 1956 |publisher=British Pathe |access-date=5 March 2011}} It was the world's first nuclear power station to provide electricity on a commercial scale to a public grid.{{Cite journal |date=5 October 1956 |title=Calder Hall Power Station |url=http://www.theengineer.co.uk/in-depth/classic-archive/october-1956-calder-hall-nuclear-station/294378.article |journal=The Engineer |access-date=27 October 2013 |archive-date=3 September 2014 |archive-url=https://web.archive.org/web/20140903192011/http://www.theengineer.co.uk/in-depth/classic-archive/october-1956-calder-hall-nuclear-station/294378.article |url-status=live }} Brief description, with link to very detailed article.A 5{{nbsp}}MWe experimental reactor at Obninsk in the Soviet Union had been connected to the public supply in 1954, though the main task was to carry out experimental studies, and it was on a small scale.

The Calder Hall design was codenamed PIPPA (Pressurised Pile Producing Power and Plutonium) by the UKAEA to denote the plant's dual commercial and military role. Construction started in 1953.{{cite web |title=The Nuclear Businesses |url=http://www.britishnucleargroup.com/content.php?pageID=262&tab=1 |url-status=dead |archive-url=https://web.archive.org/web/20070927235132/http://www.britishnucleargroup.com/content.php?pageID=262&tab=1 |archive-date=27 September 2007 |df=dmy-all}} Calder Hall had four Magnox reactors capable of generating 60{{nbsp}}MWe (net) of power each, reduced to 50{{nbsp}}MWe in 1973.{{cite web |title=United Kingdom of Great Britain and Northern Ireland: Nuclear Power Reactors |url=http://www.iaea.org/cgi-bin/db.page.pl/pris.powrea.htm?country=GB |url-status=dead |archive-url=https://web.archive.org/web/20110628235010/http://www.iaea.org/cgi-bin/db.page.pl/pris.powrea.htm?country=GB |archive-date=28 June 2011 |access-date=5 March 2011 |website=PRIS database |publisher=International Atomic Energy Agency |df=dmy}}{{cite web |title=nuclear-uk |url=http://www.industcards.com/nuclear-uk.htm |url-status=usurped |archive-url=http://arquivo.pt/wayback/20090719150823/http://www.industcards.com/nuclear-uk.htm |archive-date=2009-07-19}} The reactors also supplied steam to the whole site for process and other purposes. The reactors were supplied by UKAEA, the turbines by C. A. Parsons and Company, and the civil engineering contractor was Taylor Woodrow Construction.{{cite web |title=Calder Hall Nuclear Power Station |url=http://www.engineering-timelines.com/scripts/engineeringItem.asp?id=778 |url-status=dead |archive-url=https://web.archive.org/web/20120307231514/http://www.engineering-timelines.com/scripts/engineeringItem.asp?id=778 |archive-date=7 March 2012 |access-date=19 September 2010 |website=Engineering Times |df=dmy}}

In its early life Calder Hall primarily produced weapons-grade plutonium, with two fuel loads per year; electricity production was a secondary purpose.{{cite web |last=Peter Hayes |title=Should the United States supply light water reactors to Pyongyang? |url=http://www.nautilus.org/archives/pub/ftp/napsnet/papers/hayes1193.txt |url-status=dead |archive-url=https://web.archive.org/web/20060307121518/http://www.nautilus.org/archives/pub/ftp/napsnet/papers/hayes1193.txt |archive-date=7 March 2006 |access-date=21 August 2006 |website=Nautilus Pacific Research |df=dmy}} From 1964 it was mainly used on commercial fuel cycles; in April 1995 the UK Government announced that all production of plutonium for weapons purposes had ceased.{{Citation needed|date=January 2021}}

The station was closed on 31 March 2003, the first reactor having been in use for nearly 47{{nbsp}}years.{{Cite news |last=Brown |first=Paul |date=14 April 2003 |title=First nuclear power plant to close |work=The Guardian |location=London |url=https://www.theguardian.com/nuclear/article/0,2763,918724,00.html |access-date=21 August 2006 |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025202120/https://www.theguardian.com/uk/2003/mar/21/nuclear.world |url-status=live }} decommissioning started in 2005. The plant should be in save storage, called "care and maintenance" (C&M), by 2027 or later.[https://nda.blog.gov.uk/decommissioning-the-worlds-first-commercial-nuclear-power-station/ Decommissioning the world’s first commercial nuclear power station.] NDA, 3 Sep 2019. [https://web.archive.org/web/20220524024820/https://nda.blog.gov.uk/2019/09/03/decommissioning-the-worlds-first-commercial-nuclear-power-station/ Archived]

Calder Hall had four cooling towers, each {{convert|88|m}} in height, which were highly-visible landmarks. Plans for a museum involving renovating Calder Hall and preserving the towers were formulated, but the costs were too high.Feasibility Study with many pictures of Calder Hall:

[https://webarchive.nationalarchives.gov.uk/ukgwa/20150817115932/http://www.nda.gov.uk/documents/upload/NDA-Calder-Hall-Nuclear-Power-Station-Feasibility-Study-2007.pdf Calder Hall Nuclear Power Station Feasibility Study.] NDA/ATKINS, March 2007 The cooling towers were demolished by controlled implosions on 29 September 2007. A period of 12 weeks was required to remove asbestos in the towers' rubble.{{Cite news |date=29 September 2007 |title=Sellafield towers are demolished |work=BBC News |url=http://news.bbc.co.uk/1/hi/england/cumbria/7019414.stm |access-date=29 September 2007 |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025202120/http://news.bbc.co.uk/2/hi/uk_news/england/cumbria/7019414.stm |url-status=live }}

=Windscale Advanced Gas Cooled Reactor (WAGR)=

{{Main|Advanced gas-cooled reactor}}

The WAGR was a prototype for the UK's second generation of reactors,{{cite web |title=Project WAGR |url=http://www.sellafieldsites.com/what-we-do/featured-projects/wagr |url-status=dead |archive-url=https://web.archive.org/web/20111001192111/http://www.sellafieldsites.com/what-we-do/featured-projects/wagr |archive-date=1 October 2011 |df=dmy}} the advanced gas-cooled reactor or AGR, which followed on from the Magnox stations. The station had a rated thermal output of approximately 100{{nbsp}}MW and 30{{nbsp}}MWe. The WAGR spherical containment, known colloquially as the "golfball", is one of the iconic buildings on the site. Construction was carried out by Mitchell Construction and completed in 1962.Indictment: Power & Politics in the Construction Industry, David Morrell, Faber & Faber, 1987, {{ISBN|978-0-571-14985-8}} This reactor was shut down in 1981, and is now part of a pilot project to demonstrate techniques for safely decommissioning a nuclear reactor.{{Citation needed|date=January 2021}}

=Thermal Oxide Reprocessing Plant (THORP)=

{{Main|Thermal Oxide Reprocessing Plant}}

Between 1977 and 1978 an inquiry, chaired by Mr Justice Parker, was held into an application by BNFL for outline planning permission to build a new plant to reprocess irradiated oxide nuclear fuel from both UK and foreign reactors. The inquiry was used to answer three questions:

"1. Should oxide fuel from United Kingdom reactors be reprocessed in this country at all; whether at Windscale or elsewhere?
2. If yes, should such reprocessing be carried on at Windscale?
3. If yes, should the reprocessing plant be about double the estimated site required to handle United Kingdom oxide fuels and be used as to the spare capacity, for reprocessing foreign fuels?"
{{cite web |title=Windscale Inquiry |url=http://www.bopcris.ac.uk/bopall/ref17576.html |url-status=dead |archive-url=https://web.archive.org/web/20060212043155/http://www.bopcris.ac.uk/bopall/ref17576.html |archive-date=12 February 2006 |access-date=21 August 2006 |website=BOPCRIS – Unlocking Key British Government Publications |df=dmy-all}}
The result of the inquiry was that the new plant, the Thermal Oxide Reprocessing Plant (THORP) was given the go ahead in 1978, although it did not go into operation until 1994.{{Citation needed|date=January 2021}}

In 2003, it was announced that THORP would be closed in 2010, but this was later extended to 2018 to allow completion of agreed contracts. Originally predicted to make profits for BNFL of £500{{nbsp}}million, by 2003 it had made losses of over £1{{nbsp}}billion.{{cite news | url = http://business.timesonline.co.uk/tol/business/article885555.ece | title = Sellafield reprocessing plant to close by 2010] | archive-url=https://web.archive.org/web/20110612123141/http://business.timesonline.co.uk/tol/business/article885555.ece | archive-date=12 June 2011 | url-status = dead | newspaper = The Times | date = 26 August 2003}} THORP was closed for almost two{{nbsp}}years from 2005, after a leak had been undetected for nine months. Production eventually restarted at the plant in early 2008, but almost immediately had to be put on hold again, as an underwater lift that takes the fuel for reprocessing needed to be repaired.Geoffrey Lean, [https://www.independent.co.uk/environment/green-living/shambolic-sellafield-in-crisis-again-after-damning-safety-report-777551.html 'Shambolic' Sellafield in crisis again after damning safety report] {{Webarchive|url=https://web.archive.org/web/20170217093115/http://www.independent.co.uk/environment/green-living/shambolic-sellafield-in-crisis-again-after-damning-safety-report-777551.html |date=17 February 2017 }}, The Independent, 3 February 2008.

On 14 November 2018 it was announced that operations had ended at THORP. The facility will be used to store spent nuclear fuel until the 2070s.{{Cite news |date=14 November 2018 |title=Reprocessing ceases at UK's Thorp plant |publisher=World Nuclear News |url=http://www.world-nuclear-news.org/Articles/Reprocessing-ceases-at-UKs-Thorp-plant |access-date=15 November 2018 |archive-date=14 November 2018 |archive-url=https://web.archive.org/web/20181114202311/http://www.world-nuclear-news.org/Articles/Reprocessing-ceases-at-UKs-Thorp-plant |url-status=live }}

=Highly Active Liquor Evaporation and Storage=

Highly Active Liquor Evaporation and Storage (HALES) is a department at Sellafield. It conditions nuclear waste streams from the Magnox and Thorp reprocessing plants, prior to transfer to the Waste Vitrification Plant.

=Waste Vitrification Plant=

File:Sellafield Vitrification Plant, interior.jpg

In 1990 the Waste Vitrification Plant (WVP), which seals high-level radioactive waste in glass, was opened. In this plant, liquid wastes are mixed with glass and melted in a furnace, which when cooled forms a solid block of glass.{{Cite journal |last=Harrison |first=Mike |date=31 December 2014 |title=Vitrification of High Level Waste in the UK |url=https://www.researchgate.net/publication/269777723 |journal=Procedia Materials Science |volume=7 |pages=10–15 |doi=10.1016/j.mspro.2014.10.003 |access-date=24 September 2019 |doi-access=free |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025202219/https://www.researchgate.net/publication/269777723_Vitrification_of_High_Level_Waste_in_the_UK |url-status=live }}

The plant has three process lines and is based on the French AVM procedure. The plant was built with two lines, commissioned during 1989, with a third added in 2002. The principal item is an inductively heated melting furnace, in which the calcined waste is mixed with glass frit (fragments of smashed glass) The melt is poured into waste containers which are welded shut, allowed to cool slowly in a heater to facilitate a monolithic product (single large block of glass with minimal cracks or small crystals to facilitate long term stability), their outsides decontaminated in WVP, then again in the connected building Residue Export Facility (REF), and then placed in the air-cooled Vitrified Product Store.

This storage consists of 800 vertical storage tubes each capable of storing ten containers.{{citation needed|date=August 2016}} The total storage capacity is 8000 containers, and 6000 containers had been stored by 2016.{{Cite magazine |last=Temperton |first=James |date=17 September 2016 |title=Inside Sellafield: how the UK's most dangerous nuclear site is cleaning up its act |magazine=Wired |url=https://www.wired.co.uk/article/inside-sellafield-nuclear-waste-decommissioning |access-date=25 September 2019 |archive-date=18 October 2019 |archive-url=https://web.archive.org/web/20191018103432/https://www.wired.co.uk/article/inside-sellafield-nuclear-waste-decommissioning |url-status=live }}

Vitrification should ensure safe storage of waste in the UK for the medium- to long-term, with the objective of eventual placement in a deep geological repository. As of 2007 studies of durability and leach rates were being carried out.{{Cite report |url=https://rwm.nda.gov.uk/publication/review-of-the-development-of-uk-high-level-waste-vitrified-product/ |title=Review of the Development of UK High Level Waste Vitrified Product |last=B F Dunnett |date=30 March 2007 |access-date=24 September 2019 |work=Nexia Solutions |archive-date=24 September 2019 |archive-url=https://web.archive.org/web/20190924151123/https://rwm.nda.gov.uk/publication/review-of-the-development-of-uk-high-level-waste-vitrified-product/ |url-status=live }}

=Sellafield MOX Plant=

Construction of the Sellafield MOX fuel Plant (SMP) was completed in 1997, and operations began in October 2001.{{Cite journal |last=Malcolm Wicks |author-link=Malcolm Wicks |date=22 February 2008 |title=Hansard, Written Answers: Sellafield |url=https://publications.parliament.uk/pa/cm200708/cmhansrd/cm080222/text/80222w0002.htm#column_1034W |url-status=dead |journal=Hansard |id=22 February 2008 : Column 1034W |archive-url=https://web.archive.org/web/20080313012915/http://www.publications.parliament.uk/pa/cm200708/cmhansrd/cm080222/text/80222w0002.htm |archive-date=13 March 2008 |access-date=12 March 2008 |df=dmy-all}} Although designed with a production capacity of 120{{nbsp}}tonnes/year, the plant achieved a total output of only 5{{nbsp}}tonnes during its first five{{nbsp}}years of operation. Consequently, in 2008 orders for the plant had to be fulfilled at COGEMA in France,{{Cite news |last=Geoffrey Lean |date=9 March 2008 |title='Dirty bomb' threat as UK ships plutonium to France |work="The Independent |location=London |url=https://www.independent.co.uk/news/uk/home-news/dirty-bomb-threat-as-uk-ships-plutonium-to-france-793488.html |access-date=12 March 2008 |archive-date=29 April 2008 |archive-url=https://web.archive.org/web/20080429111340/http://www.independent.co.uk/news/uk/home-news/dirty-bomb-threat-as-uk-ships-plutonium-to-france-793488.html |url-status=live }} and the plant was reported in the media as "failed"{{Cite news |last=Geoffrey Lean |date=9 March 2008 |title=Minister admits total failure of Sellafield 'MOX' plant |work=The Independent |location=London |url=https://www.independent.co.uk/news/uk/politics/minister-admits-total-failure-of-sellafield-mox-plant-793489.html |access-date=12 March 2008 |archive-date=13 April 2008 |archive-url=https://web.archive.org/web/20080413103313/http://www.independent.co.uk/news/uk/politics/minister-admits-total-failure-of-sellafield-mox-plant-793489.html |url-status=live }}{{Cite news |date=29 February 2008 |title=MOX Fuel Output for Shikoku Electric Power to Begin in March |publisher=The Japan Corporate News Network |url=http://www.japancorp.net/Article.Asp?Art_ID=17169 |url-status=dead |access-date=12 March 2008 |archive-url=https://web.archive.org/web/20090805203113/http://www.japancorp.net/Article.Asp?Art_ID=17169 |archive-date=5 August 2009 |df=dmy-all}} with a total construction and operating cost by 2009 of £1.2{{nbsp}}billion.{{Cite news |last=Jon Swaine |date=7 April 2009 |title=Nuclear recycling plant costs £1.2{{nbsp}}billion and still doesn't work |work=The Daily Telegraph |location=London |url=https://www.telegraph.co.uk/earth/energy/nuclearpower/5117991/Nuclear-recycling-plant-costs-1.2-billion-and-still-doesnt-work.html |archive-url=https://web.archive.org/web/20090411072714/http://www.telegraph.co.uk/earth/energy/nuclearpower/5117991/Nuclear-recycling-plant-costs-1.2-billion-and-still-doesnt-work.html |url-status=dead |archive-date=11 April 2009 |access-date=7 April 2009}} On 12 May 2010, an agreement was reached with existing Japanese customers on future MOX supplies.{{Cite news |date=2 July 2010 |title=Areva will supply new rod line at Sellafield MOX plant |publisher=Nuclear Engineering International |url=http://www.neimagazine.com/story.asp?sectionCode=132&storyCode=2056759 |url-status=dead |access-date=6 July 2010 |archive-url=https://web.archive.org/web/20110613091647/http://www.neimagazine.com/story.asp?sectionCode=132&storyCode=2056759 |archive-date=13 June 2011 |df=dmy-all}}

In July 2010 Areva was contracted to design and supply a new rod line to improve reliability and production rate. However, on 3 August 2011 the Nuclear Decommissioning Authority announced that the MOX Plant would close, due to the loss of the Japanese orders following the Fukushima Daiichi nuclear disaster. The NDA stated that the plant "had suffered many years of disappointing performance", and it was reported that the total cost to date had been £1.4{{nbsp}}billion.{{cite web|url=http://www.theguardian.com/environment/2011/aug/03/sellafield-mox-plant-close|title=Sellafield Mox nuclear fuel plant to close|date=3 August 2011|website=The Guardian|access-date=25 October 2021|archive-date=19 October 2021|archive-url=https://web.archive.org/web/20211019053440/https://www.theguardian.com/environment/2011/aug/03/sellafield-mox-plant-close|url-status=live}}{{Cite news |date=3 August 2011 |title=UK MOX plant to close |publisher=Nuclear Engineering International |url=http://www.neimagazine.com/story.asp?storyCode=2060292 |url-status=dead |access-date=3 August 2011 |archive-url=https://web.archive.org/web/20120529023020/http://www.neimagazine.com/story.asp?storyCode=2060292 |archive-date=29 May 2012 |df=dmy-all}} Although Japanese orders for MOX fuel re-commenced on 17 April 2013, they were supplied from France by COGEMA.{{cite web|title=Mox fuel shipment from France to Japan departs – PNTL – Pacific Nuclear Transport Ltd |url=http://www.pntl.co.uk/2013/04/mox-fuel-shipment-for-france-to-japan-departs/ |access-date=22 May 2013 |archive-date=18 October 2013 |archive-url=https://web.archive.org/web/20131018025358/http://www.pntl.co.uk/2013/04/mox-fuel-shipment-for-france-to-japan-departs/ |url-status=live }}

=Enhanced Actinide Removal Plant (EARP)=

Since its early days, Sellafield has discharged low-level radioactive waste into the sea, using a flocculation process to remove radioactivity from liquid effluent before discharge. Metals dissolved in acidic effluents were made to produce a metal hydroxide flocculant precipitate following the addition of ammonium hydroxide. The suspension was then transferred to settling tanks where the precipitate would settle out, and the remaining clarified liquid, or supernate, would be discharged to the Irish Sea. As an improvement to that process, in 1994 the Enhanced Actinide Removal Plant (EARP) became operational.{{citation needed|date=August 2016}} In EARP the effectiveness of the process is enhanced by the addition of reagents to remove the remaining soluble radioactive species. EARP was enhanced further in 2004 to further reduce the quantities of technetium-99 released to the environment.{{cite web |last=Ben Irons |title=Treating a 50-year-old legacy of radioactive sludge waste |url=http://www.engineerlive.com/power-engineer/nuclear-power/14432/treating-a-50yearold-legacy-of-radioactive-sludge-waste.thtml |url-status=dead |archive-url=https://web.archive.org/web/20070126051749/http://www.engineerlive.com/power-engineer/nuclear-power/14432/treating-a-50yearold-legacy-of-radioactive-sludge-waste.thtml |archive-date=26 January 2007 |access-date=21 August 2006 |website=Engineer Live |df=dmy-all}}

=Radioactive waste stores=

Sellafield has a number of radioactive waste stores, mostly working on an interim basis while a deep geological repository plan is developed and implemented.

The stores include:

{{Cite report |url=http://www.nda.gov.uk/documents/loader.cfm?url=/commonspot/security/getfile.cfm&pageid=4007 |title=Sellafield Site Summary – 2006/07 Lifetime Plan (Rev. A Issue 2) |date=20 April 2006 |publisher=Nuclear Decommissioning Authority |access-date=16 August 2010 |archive-url=https://web.archive.org/web/20071110103707/http://www.nda.gov.uk/documents/loader.cfm?url=%2Fcommonspot%2Fsecurity%2Fgetfile.cfm&pageid=4007 |archive-date=10 November 2007 |url-status=dead |work=British Nuclear Group |df=dmy-all}}

  • Legacy Ponds and Silos – Storage of historic waste
  • Sludge packaging plant – Treatment and interim storage of sludges from legacy ponds
  • Sellafield product and residue store – Site store for plutonium and plutonium residues – The civil plutonium stockpile stood at 140{{nbsp}}tonnes at the ending of reprocessing in 2022.

  • Engineered drum stores – Site stores for plutonium-contaminated material
  • Encapsulated product stores – Site stores for grouted wastes
  • Vitrified product store – Vitrified high level waste

The UK's main Low Level Waste Repository for nuclear waste is {{convert|6|km}} south east of Sellafield at Drigg. A paper published in 1989 said that 70% of the waste received at Drigg originated from Sellafield.{{Cite journal |date=25 January 1989 |title=BNF shows its rubbish dump |journal=The Journal |location=Newcastle upon Tyne, UK |publisher=Newcastle Chronicle and Journal Ltd |page=18}}

=Fellside Power Station=

Fellside Power Station is a 168{{nbsp}}MWe CHP gas-fired power station adjacent to the Sellafield site, which it supplies with process and heating steam. It is run as Fellside Heat and Power Ltd, is wholly owned by Sellafield Ltd and is operated & managed by PX Ltd. It was built in 1993, in anticipation of the closure of the Calder Hall generating station, which supplied these services. It was originally equally owned by BNFL and Scottish Hydro Electric (which became Scottish and Southern Energy in December 1998). BNFL bought SSE's 50% share in January 2002.{{Citation needed|date=January 2021}}

The station uses three General Electric Frame 6001B gas turbines, with power entering the National Grid via a 132{{nbsp}}kV transformer. The turbines at Fellside are normally natural gas fired but are also able to run on distillate (diesel) fuel.{{cite web |date=March 2002 |title=British Nuclear Fuels plc's completed acquisition of Fellside Heat and Power Limited |url=http://www.ofgem.gov.uk/About%20us/enforcement/mergers/oft/Documents1/mergersandaquisitions%2050.pdf |access-date=8 December 2008 |publisher=OFGEM |archive-date=19 December 2008 |archive-url=https://web.archive.org/web/20081219073740/http://www.ofgem.gov.uk/About%20us/enforcement/mergers/oft/Documents1/mergersandaquisitions%2050.pdf |url-status=live }}

In May 2023, Sellafield Ltd removed a set of large, now redundant steel tanks at the Fellside power station that were no longer being used. Their original purpose has been fulfilled by newer tanks.{{cite web | url=https://www.youtube.com/watch?v=HCyKwRLSn_U | title=Sellafield Ltd - Fellside combined Heat and Power Plant - Tank demolition | website=YouTube }}

=National Nuclear Laboratory headquarters=

The Central Laboratory at Sellafield is the headquarters of the National Nuclear Laboratory (NNL).{{cite web|url=https://nnl.co.uk/|title=National Nuclear Laboratory|website=nnl.co.uk|access-date=25 October 2021|archive-date=4 October 2021|archive-url=https://web.archive.org/web/20211004224942/https://www.nnl.co.uk/|url-status=live}} It supports newly built reactors, operation of reactors, operations of fuel processing plants and decommissioning and clean-up. The NNL's Central Laboratory can undertake a wide range of radioactive and non-radioactive experimental programmes.{{Citation needed|date=January 2021}}

It undertakes a wide range of analytical services, with customers ranging from Government and the NDA to site licence companies, utilities, nuclear specialists and universities. Smaller experiments are undertaken at Sellafield and larger experiments and rigs are assembled off site, in non-radioactive areas prior to active testing in a radioactive setting.{{Citation needed|date=January 2021}}

Sellafield and the local community

=Employment=

File:Svc3.jpg

Sellafield directly employs around 10,000 people{{cite web |title=Site Statistics |url=http://www.nuclearsites.co.uk/page.php?pageID=709 |url-status=dead |archive-url=https://web.archive.org/web/20070927205355/http://www.nuclearsites.co.uk/page.php?pageID=709 |archive-date=27 September 2007 |access-date=21 August 2006 |website=NuclearSites Web Site}} and is one of the two largest non-governmental employers in West Cumbria (along with BAE Systems at Barrow-in-Furness),{{cite web |title=THE ECONOMY OF CUMBRIA: THE SIGNIFICANCE OF MAJOR EMPLOYERS |url=http://www.uclan.ac.uk/carlisle/cred/files/economy/sept05/Major%20Employers.pdf |url-status=dead |archive-url=https://web.archive.org/web/20070221072051/http://www.uclan.ac.uk/carlisle/cred/files/economy/sept05/Major%20Employers.pdf |archive-date=21 February 2007 |access-date=21 August 2006 |website=Centre for Regional Economic Development |df=dmy}} with approximately 90% of the employees coming from West Cumbria.{{cite web |title=Nuclear decommissioning at Sellafield |url=https://www.bbc.co.uk/cumbria/content/articles/2005/04/07/nuclear_decommissioning_feature.shtml |access-date=21 August 2006 |website=BBC News |archive-date=16 July 2006 |archive-url=https://web.archive.org/web/20060716185135/http://www.bbc.co.uk/cumbria/content/articles/2005/04/07/nuclear_decommissioning_feature.shtml |url-status=live }}

Because of the increase in local unemployment following any run down of Sellafield operations, the Nuclear Decommissioning Authority (and HMG) is concerned that this needs to be managed.{{cite web |date=1 November 2004 |title=Government pledges to safeguard West Cumbria's future |url=http://www.gnn.gov.uk/environment/detail.asp?ReleaseID=133995&NewsAreaID=2&NavigatedFromDepartment=False |website=Government News Network |id=GNN ref 104585P}}{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}

=West Cumbria Sites Stakeholder Group (WCSSG)=

The WCSSG is an independent body whose role is to provide public scrutiny of the nuclear industry in West Cumbria.{{cite web|url=https://wcssg.co.uk/|title=West Cumbria Stakeholder Group Website|website=wcssg.co.uk|access-date=26 September 2019|archive-date=26 September 2019|archive-url=https://web.archive.org/web/20190926100102/https://wcssg.co.uk/|url-status=live}}

The WCSSG replaced the Sellafield Local Liaison Committee (SLLC) to cover all the nuclear licensed sites in the area, not just Sellafield Site, and this change is intended to emphasise the importance of engagement with the community; encouraging input in discussions and consultations from all stakeholders. With the change of organisation and ownership of licensed sites, the WCSSG has consequently changed and re-organised its sub-committees, but the objective remains the same. The meetings of the main group and its sub-committees are held in West Cumbria and are open to the public.

=Sellafield Visitor Centre=

File:Sellafield Visitors Centre, frontage.jpg

The £5 million centre was opened by Prince Philip on 6 June 1988,{{cite web |author1=Rosina Robinson |title=A trip down memory lane |url=https://nda.blog.gov.uk/a-trip-down-memory-lane/ |website=Nuclear Decommissioning Authority |access-date=5 December 2023 |date=10 May 2019}} and at its peak it attracted an average of 1,000 people per day.{{cite web |author1=James Temperton |title=Inside Sellafield: how the UK's most dangerous nuclear site is cleaning up its act |url=https://www.wired.co.uk/article/inside-sellafield-nuclear-waste-decommissioning |website=Wired |access-date=5 December 2023 |date=17 September 2016}} However, despite a large refurbishment in 1995, and the transfer of creative control to the Science Museum in 2002,{{cite web |author1=Jenny Barwise |title=Sellafield Visitors' Centre to be demolished |url=https://www.in-cumbria.com/news/17477221.sellafield-visitors-centre-demolished/ |website=In Cumbria |access-date=5 December 2023 |date=5 March 2019}}{{cite web |title=Science Museum to run BNFL site |url=https://www.leisureopportunities.co.uk/news/Science-Museum-to-run-BNFL-site/284 |website=Leisure Opportunities |access-date=5 December 2023}} its popularity deteriorated, prompting the change from a tourist attraction to a conference facility in 2008. This facility completely closed in 2015, was briefly used by the Civil Nuclear Constabulary as a training facility, and as of 2019 the building has been completely demolished. The story of Sellafield is now being told through a permanent exhibition at the Beacon Museum in Whitehaven.

Incidents

=Radiological releases=

Between 1950 and 2000, there were 21 serious incidents or accidents involving off-site radiological releases that warranted a rating on the International Nuclear Event Scale, one at level 5, five at level 4 and fifteen at level 3. Additionally, during the 1950s and 1960s there were protracted periods of known, deliberate discharges to the atmosphere of plutonium and irradiated uranium oxide particulates.{{Cite journal |last=G A M Webb |date=March 2006 |title=Classification of events with an off-site radiological impact at the Sellafield site between 1950 and 2000, using the International Nuclear Event Scale |journal=Journal of Radiological Protection |volume=26 |issue=1 |pages=33–49 |bibcode=2006JRP....26...33W |doi=10.1088/0952-4746/26/1/002 |pmid=16522943|s2cid=37975977 }}

In the effort to build the independent British nuclear weapon in the 1940s and 1950s, diluted radioactive waste was discharged by pipeline into the Irish Sea.C.Michael Hogan. 2011. [http://www.eoearth.org/article/Irish_Sea?topic=49523 Irish Sea. eds. P.Saundry & C.Cleveland. Encyclopedia of Earth. National Council for Science and the Environment. Washington DC] {{Webarchive|url=https://web.archive.org/web/20130602131956/http://www.eoearth.org/article/Irish_Sea?topic=49523 |date=2 June 2013 }} Greenpeace claims that the Irish Sea remains one of the most heavily contaminated seas in the world because of these discharges.{{cite web |title=Sellafield nuclear reprocessing facility – Greenpeace UK |url=http://www.greenpeace.org.uk/nuclear/sellafield-nuclear-reprocessing-facility |url-status=dead |archive-url=https://web.archive.org/web/20160303235706/http://www.greenpeace.org.uk/nuclear/sellafield-nuclear-reprocessing-facility |archive-date=3 March 2016 |df=dmy-all}} Ocean scientist David Assinger has challenged this general suggestion, and cites the Dead Sea as the most radioactive sea in the world.http://www.challenger-society.org.uk/node/95 {{Webarchive|url=https://web.archive.org/web/20131018053143/http://www.challenger-society.org.uk/node/95 |date=18 October 2013 }} The Irish Sea: Not the Most Radioactive Sea in the World. The Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention) reports an estimated {{convert|200|kg|abbr=on}} of plutonium has been deposited in the marine sediments of the Irish Sea.{{cite web |title=Quality Status Report 2000 for the North East-Atlantic (Regional QSR III, Chapter 4 Chemistry, p66 |url=http://www.ospar.org/eng/doc/pdfs/R3C4.pdf |url-status=dead |archive-url=https://web.archive.org/web/20070927093611/http://www.ospar.org/eng/doc/pdfs/R3C4.pdf |archive-date=27 September 2007 |access-date=3 June 2007 |publisher=OSPAR Commission |df=dmy-all}}

Most of the area's long-lived radioactive technetium came from the reprocessing of spent nuclear fuel at the Sellafield facility.{{cite web |title=Technetium-99 Behavior in the Terrestrial Environment – Field Observations and Radiotracer Experiments- |url=http://www.radiochem.org/paper/JN41/j041Tagami.pdf |url-status=dead |archive-url=https://web.archive.org/web/20060724180943/http://www.radiochem.org/paper/JN41/j041Tagami.pdf |archive-date=24 July 2006 |access-date=23 August 2006 |website=Journal of Nuclear and Radiochemical Sciences, Vol. 4, No.1, pp. A1-A8, 2003 |df=dmy}} Technetium-99 is a radioactive element which is produced by nuclear fuel reprocessing, and also as a by-product of medical facilities (for example Ireland is responsible for the discharge of approximately 11{{nbsp}}grams or 6.78{{nbsp}}gigabecquerels of technetium-99 each year despite not having a nuclear industry).{{cite web |title=Report of Ireland on the Implementation of the OSPAR Strategy with regard to Radioactive Substances (June 2001) |url=http://www.environ.ie/en/Publications/Environment/EnvironmentalRadiation/FileDownLoad,1336,en.pdf |url-status=dead |archive-url=https://web.archive.org/web/20080530004205/http://www.environ.ie/en/Publications/Environment/EnvironmentalRadiation/FileDownLoad,1336,en.pdf |archive-date=30 May 2008 |access-date=4 April 2008 |website=Department of Environment, Heritage and Local Government |pages=2 para.9 |df=dmy-all}}

Because it is almost uniquely produced by nuclear fuel reprocessing, technetium-99 is an important element as part of the OSPAR Convention since it provides a good tracer for discharges into the sea.{{citation needed|date=August 2016}} In itself, the technetium discharges do not represent a significant radiological hazard,{{cite web |title=News Release: MINISTERS ANNOUNCE DECISION ON TECHNETIUM-99 |url=http://www.defra.gov.uk/news/2002/021211a.htm |url-status=dead |archive-url=https://web.archive.org/web/20060912002338/http://www.defra.gov.uk/news/2002/021211a.htm |archive-date=12 September 2006 |access-date=23 August 2006 |website=Department for Environment, Food and Rural Affairs |df=dmy}} and in 2000, a study noted "...that in the most recently reported dose estimates for the most exposed Sellafield group of seafood consumers (FSA/SEPA 2000), the contributions from technetium-99 and actinide nuclides from Sellafield (<100{{nbsp}}μSv) was less than that from 210Po attributable to discharges from the Whitehaven phosphate fertiliser plant and probably less than the dose from naturally occurring background levels of 210Po."{{cite web |last=J D Harrison |display-authors=etal |title=Gut transfer and doses from environmental technetium |url=http://www.iop.org/EJ/abstract/0952-4746/21/1/004 |access-date=23 August 2006 |website=J. Radiol. Prot. 21 9-11}}

Because of the need to comply with the OSPAR Convention, British Nuclear Group commissioned a new process in which technetium-99 was removed from the waste stream and vitrified in glass blocks in the new Vitrification Plant on site.{{cite web |title=44 years of discharges prevented after early end to Sellafield waste programme |url=http://www.britishnucleargroup.com/content.php?pageID=31&nID=706 |url-status=dead |archive-url=https://web.archive.org/web/20060520195812/http://www.britishnucleargroup.com/content.php?pageID=31&nID=706 |archive-date=20 May 2006 |access-date=23 August 2006 |website=Latest News: British Nuclear Group, 26 January 2006 |df=dmy}}

Discharges into the sea of radioactive effluents – mainly caesium-137 – from Sellafield amounted to 5200{{nbsp}}TBq during the peak year, 1975.{{cite web |date=20 November 2011 |title=State of the Environment Norway : Releases of caesium-137 from Sellafield |url=http://www.environment.no/Goals-and-indicators/Goals-and-indicators/Radioactive-pollution/Limit-radiation/Releases-of-technetium-99-and-caesium-137-from-Sellafield/--Releases-of-caesium-137-from-Sellafield-/ |url-status=dead |archive-url=https://web.archive.org/web/20140726193450/http://www.environment.no/Goals-and-indicators/Goals-and-indicators/Radioactive-pollution/Limit-radiation/Releases-of-technetium-99-and-caesium-137-from-Sellafield/--Releases-of-caesium-137-from-Sellafield-/ |archive-date=26 July 2014 |access-date=1 September 2013 |publisher=Norwegian Radiation Protection Authority}}

In 1983 radioactive discharges to sea containing ruthenium and rhodium-106, both beta-emitting isotopes, resulted in temporary warnings against swimming in the sea along a {{convert|10|mi|km|adj=on}} stretch of coast between St. Bees and Eskmeals.{{Cite journal |last=Morris |first=Michael |date=18 February 1984 |title=Warnings go up on nuclear site beaches |journal=The Guardian |location=UK |publisher=Guardian Newspapers |page=3}}{{Cite journal |last=Please add first missing authors to populate metadata. |date=22 December 1983 |title=Sellafield |url=https://api.parliament.uk/historic-hansard/written-answers/1983/dec/22/sellafield-1#S6CV0051P0_19831222_CWA_219 |journal=Hansard |access-date=17 March 2011 |archive-date=21 September 2011 |archive-url=https://web.archive.org/web/20110921065429/http://hansard.millbanksystems.com/written_answers/1983/dec/22/sellafield-1#S6CV0051P0_19831222_CWA_219 |url-status=live }}

BNFL received a fine of £10,000 for this discharge.{{cite web |title=Written answers for Friday 5th{{nbsp}}May 2000 |url=https://publications.parliament.uk/pa/cm199900/cmhansrd/vo000505/text/00505w05.htm |access-date=21 August 2006 |website=Hansard |archive-date=11 July 2006 |archive-url=https://web.archive.org/web/20060711205431/http://www.publications.parliament.uk/pa/cm199900/cmhansrd/vo000505/text/00505w05.htm |url-status=live }} 1983 was also the year in which Yorkshire Television produced a documentary "Windscale: The Nuclear Laundry", which claimed that the low levels of radioactivity that are associated with waste streams from nuclear plants such as Sellafield did pose a non-negligible risk.{{cite web |title=Science: Leukaemia and nuclear power stations |url=https://www.newscientist.com/article/mg12216693.300.html |access-date=21 August 2006 |website=New Scientist |archive-date=4 January 2008 |archive-url=https://web.archive.org/web/20080104193157/http://www.newscientist.com/article/mg12216693.300.html |url-status=live }}

=Windscale fire=

{{main|Windscale fire}}

The Windscale fire of October 1957 stands as the most severe incident in the history of the Sellafield site. This event, rated at level 5 out of 7 on the International Nuclear Event Scale, ranks among the world's most significant nuclear accidents, with only three events having received higher ratings. The incident involved a fire in the Windscale Piles, facilities used for plutonium production, which resulted in a substantial release of radioactive fallout into the environment.

The consequences of this event were far-reaching. Surrounding agricultural areas, particularly dairy farms, experienced radioactive contamination. Of notable concern was the release of significant quantities of the iodine-131 isotope, a known contributor to thyroid cancer risk.{{cite news |last1=Morelle |first1=Rebecca |author-link=Rebecca Morelle |title=Windscale fallout underestimated |url=http://news.bbc.co.uk/1/hi/sci/tech/7030536.stm |access-date=4 July 2020 |work=BBC News |date=6 October 2007 |archive-date=9 August 2017 |archive-url=https://web.archive.org/web/20170809232742/http://news.bbc.co.uk/1/hi/sci/tech/7030536.stm |url-status=live }} The scale and impact of this incident have made it a subject of ongoing study and discussion in the field of nuclear safety.

The UK government downplayed the events for some time and the original reports on the fire were subject to heavy censorship, as Prime Minister Harold Macmillan feared the incident would harm British-American nuclear relations. It has since come to light that small but significant amounts of the highly dangerous radioactive isotope polonium-210 were also released, though knowledge of this was excluded from government reports until 1983.{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=9781349240081 |page=147 |edition=Second}}

The Windscale fire remains Britain's worst nuclear accident, and the worst nuclear accident in the West. The release would have been much worse if it had not been for the filter at the top of the Pile's exhaust chimney.

A 1988 UK government estimate stated that 100 people "probably" died as a result of exposure to the radioactive fallout from the Windscale fire.{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=9781349240081 |page=152 |edition=Second}}{{cite news |last1=Brown |first1=Paul |title=Windscale's terrible legacy |url=https://www.theguardian.com/uk/1999/aug/26/3 |access-date=30 June 2020 |work=The Guardian |date=26 August 1999 |archive-date=30 June 2020 |archive-url=https://web.archive.org/web/20200630114433/https://www.theguardian.com/uk/1999/aug/26/3 |url-status=live }} In 2007, the 50-year anniversary of the fire, new academic research concluded that the amount of radioactive fallout released was twice the existing estimates and it spread further east than thought. The study concluded that 240 people were given cancer in the surrounding areas, and that 100 to 240 of these cancer cases were fatal.

=Plutonium Recovery Plant criticality=

On 24 August 1970, a criticality incident occurred in the Plutonium Recovery Plant.{{Cite journal |last=Daniels |first=J |display-authors=etal |title=Criticality Incident – August 24, 1970 |url=https://ncsp.llnl.gov/LA13638/reports/025.ref_025.pdf |journal=International Developments in Criticality Safety |pages=35–36 |access-date=12 April 2020 |archive-date=12 April 2020 |archive-url=https://web.archive.org/web/20200412233507/https://ncsp.llnl.gov/LA13638/reports/025.ref_025.pdf |url-status=live }}

The plant recovered plutonium from miscellaneous sources and was considered tightly controlled. Plutonium was dissolved and transferred into a solvent extraction column through a transfer vessel and backflow trap. Unexpectedly, {{convert|2.15|kg|abbr=on}} of plutonium had accumulated in the transfer vessel and backflow trap and become just sub-critical. As an organic solvent was added to the aqueous solution in the vessel, the organic and aqueous phases separated out with the organic layer on top. This solvent extracted plutonium from the aqueous solution with sufficient concentration and geometry to create a criticality.{{Cite book |last=McLaughlin |title=A Review of Criticality Accidents |publisher=Los Alamos National Laboratory |year=2000 |pages=43–44 |display-authors=etal}}

Two plant workers were exposed to radiation.{{Cite book |url=https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/060/27060437.pdf |title=Significant Incidents in Nuclear Fuel Cycle Facilities |publisher=IAEA |year=1996 |page=36 |access-date=12 April 2020 |archive-date=12 April 2020 |archive-url=https://web.archive.org/web/20200412233511/https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/060/27060437.pdf |url-status=live }}

=First Generation Magnox Storage Pond Deterioration=

Due to algae forming in the pond and a buildup of radioactive sludge, it was impossible to determine exactly how much radioactive waste was stored in the FGMSP. British authorities had not been able to provide the Euratom inspectors with precise data and the European Commission took action against Great Britain in the European Court of Justice in 2004.{{cite web |title=European Commission – PRESS RELEASES – Press release – Nuclear safeguards: the Commission imposes binding measures to put an end to an infringement at the Sellafield site in the United Kingdom |url=http://europa.eu/rapid/pressReleasesAction.do?reference=IP/04/419&format=HTML&aged=1&language=EN&guiLanguage=en |access-date=25 October 2021 |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025202208/https://ec.europa.eu/commission/presscorner/detail/en/IP_04_419 |url-status=live }}{{cite web|url=http://www.dissident-media.org/infonucleaire/passoire_nuc_sellafield.html|title=Windscale, une passoire nucléaire rebaptisée Sellafield|website=www.dissident-media.org|access-date=12 March 2011|archive-date=26 November 2010|archive-url=https://web.archive.org/web/20101126210157/http://www.dissident-media.org/infonucleaire/passoire_nuc_sellafield.html|url-status=live}} According to Greenpeace there was an expected 1300{{nbsp}}kg of plutonium, 400{{nbsp}}kg of which was in mud sediments.{{cite web |title=B30 Main Points |website=Greenpeace |url=http://www.greenpeace.org.uk/files/pdfs/migrated/MultimediaFiles/Live/FullReport/6268.pdf |url-status=dead |archive-url=https://web.archive.org/web/20120307122420/http://www.greenpeace.org.uk/files/pdfs/migrated/MultimediaFiles/Live/FullReport/6268.pdf |archive-date=7 March 2012 |access-date=12 March 2011 |df=dmy-all}}

Radiation around the pool could get so high that a person was not allowed to stay more than 2 minutes, seriously affecting decommissioning.{{cite web |last=BBC |title=So what the heck is this Sellafield thing all about? |url=https://www.bbc.co.uk/cumbria/content/articles/2005/12/12/sellafield_feature.shtml |access-date=25 December 2019 |archive-date=2 October 2018 |archive-url=https://web.archive.org/web/20181002020125/http://www.bbc.co.uk/cumbria/content/articles/2005/12/12/sellafield_feature.shtml |url-status=live }} The pool was not watertight; time and weather had created cracks in the concrete, letting contaminated water leak.{{cite web |url=http://www.wise-paris.org/index.html?/english/othersnews/year_2003/othersnews030715.html&/english/frame/menu.html&/english/frame/band.html |title=Plutonium Investigation|website=www.wise-paris.org |access-date=25 October 2021 |url-status=live |archive-date=26 September 2018 |archive-url=https://web.archive.org/web/20180926121543/http://www.wise-paris.org/index.html?%2Fenglish%2Fothersnews%2Fyear_2003%2Fothersnews030715.html&%2Fenglish%2Fframe%2Fmenu.html&%2Fenglish%2Fframe%2Fband.html}} In 2014 photographs of the storage ponds were leaked to the media, showing they were in poor condition with cracked concrete, vegetation growing amongst machinery and seagulls bathing in the pools.{{Cite news |last1=John Vidal |last2=Rob Edwards |date=29 October 2014 |title=Photographs of Sellafield nuclear plant prompt fears over radioactive risk |work=The Guardian |url=https://www.theguardian.com/environment/2014/oct/29/sellafield-nuclear-radioactive-risk-storage-ponds-fears |access-date=25 September 2019 |archive-date=25 September 2019 |archive-url=https://web.archive.org/web/20190925110004/https://www.theguardian.com/environment/2014/oct/29/sellafield-nuclear-radioactive-risk-storage-ponds-fears |url-status=live }}

=MOX fuel quality data falsification=

The MOX Demonstration Facility was a small-scale plant to produce commercial quality MOX fuel for light water reactors. The plant was commissioned between 1992 and 1994, and until 1999 produced fuel for use in Switzerland, Germany and Japan.{{cite web |title=Nuclear Development in the United Kingdom |url=https://www.world-nuclear.org/information-library/country-profiles/countries-t-z/appendices/nuclear-development-in-the-united-kingdom.aspx |publisher=World Nuclear Association |access-date=12 December 2021 |date=2016}}

In 1999 it was discovered that the plant's staff had been falsifying quality assurance data since 1996.{{Cite news |last1=Watts |first1=Jonathan |last2=Paul Brown |date=15 September 1999 |title=Japan launches inquiry into BNFL |page=9 |publisher=Guardian Newspapers}} A Nuclear Installations Inspectorate (NII) investigation concluded four of the five work-shifts were involved in the falsification, though only one worker admitted to falsifying data, and that "the level of control and supervision ... had been virtually non-existent.". The NII stated that the safety performance of the fuel was not affected as there was also a primary automated check on the fuel. Nevertheless, "in a plant with the proper safety culture, the events described in this report could not have happened" and there were systematic failures in management.{{cite web |last=Nuclear Installations Inspectorate |date=18 February 2000 |title=An Investigation into the Falsification of Pellet Diameter Data in the MOX Demonstration Facility at the BNFL Sellafield Site and the Effect of this on the Safety of MOX Fuel in Use |url=http://www.hse.gov.uk/nuclear/mox/mox1.htm |url-status=dead |archive-url=https://web.archive.org/web/20060924030658/http://www.hse.gov.uk/nuclear/mox/mox1.htm |archive-date=24 September 2006 |access-date=18 November 2006 |df=dmy-all}}

BNFL had to pay compensation to the Japanese customer, Kansai Electric, and take back a flawed shipment of MOX fuel from Japan.{{Cite news |date=11 July 2000 |title=BNFL ends Japan nuclear row |publisher=BBC |url=http://news.bbc.co.uk/1/hi/uk/828046.stm |access-date=18 November 2006 |archive-date=17 July 2004 |archive-url=https://web.archive.org/web/20040717121217/http://news.bbc.co.uk/1/hi/uk/828046.stm |url-status=live }} BNFL's Chief Executive John Taylor resigned,{{Cite news |date=17 April 2000 |title=Safety overhaul at Sellafield |publisher=BBC |url=http://news.bbc.co.uk/1/hi/uk/717051.stm |access-date=18 November 2006 |archive-date=18 April 2003 |archive-url=https://web.archive.org/web/20030418122213/http://news.bbc.co.uk/1/hi/uk/717051.stm |url-status=live }} after initially resisting resignation when the NII's damning report was published.{{Cite news |date=19 February 2000 |title=BNFL chief determined to stay despite damning safety report |work=Daily Telegraph |url=https://www.telegraph.co.uk/htmlContent.jhtml?html=/archive/2000/02/19/nbnfl19.html |url-status=dead |access-date=18 November 2006 |archive-url=https://web.archive.org/web/20021120222700/http://www.telegraph.co.uk/htmlContent.jhtml?html=%2Farchive%2F2000%2F02%2F19%2Fnbnfl19.html |archive-date=20 November 2002 |df=dmy-all}}{{Cite news |last=Nolan Fell |date=1 April 2000 |title=BNFL in crisis |publisher=Nuclear Engineering International |url=http://www.neimagazine.com/features/featurebnfl-in-crisis/ |access-date=17 January 2014 |archive-date=19 May 2013 |archive-url=https://web.archive.org/web/20130519102811/http://www.neimagazine.com/features/featurebnfl-in-crisis/ |url-status=live }}

=Plutonium records discrepancy=

On 17 February 2005, the UK Atomic Energy Authority reported that {{convert|29.6|kg|lb}} of plutonium was unaccounted for in auditing records at the Sellafield nuclear fuel reprocessing plant. The operating company, the British Nuclear Group, described this as a discrepancy in paper records and not as indicating any physical loss of material. They pointed out that the error amounted to about 0.5%, whereas International Atomic Energy Agency regulations permit a discrepancy up to 1% as the amount of plutonium recovered from the reprocessing process never precisely matches the pre-process estimates.{{Citation needed|date=January 2021}}

The inventories in question were accepted as satisfactory by Euratom, the relevant regulatory agency.{{Cite news |date=17 February 2005 |title=Missing plutonium 'just on paper' |work=BBC News |url=http://news.bbc.co.uk/2/hi/uk_news/4272691.stm |access-date=22 August 2006 |archive-date=25 December 2006 |archive-url=https://web.archive.org/web/20061225111553/http://news.bbc.co.uk/2/hi/uk_news/4272691.stm |url-status=live }}{{Cite news |last=Taylor |first=Andrew |date=18 February 2005 |title=Auditors clear BNFL over missing plutonium |work=Financial Times |url=http://www.ft.com/cms/s/0/f1d39988-8152-11d9-a8de-00000e2511c8.html |archive-url=https://ghostarchive.org/archive/20221210/http://www.ft.com/cms/s/0/f1d39988-8152-11d9-a8de-00000e2511c8.html |archive-date=10 December 2022 |url-access=subscription |url-status=live |access-date=27 February 2017}}

=Waste Vitrification Plant sabotage=

In 2000, wires on six robotic arms that moved vitrified glass blocks were deliberately cut by staff, putting the vitrification plant out of operation for three days.{{Cite news |last=Brown |first=Paul |date=24 March 2000 |title=Sabotage spurs Swiss to join Sellafield exodus |work=The Guardian |url=https://www.theguardian.com/world/2000/mar/24/nuclear.uk |access-date=24 September 2019 |archive-date=24 September 2019 |archive-url=https://web.archive.org/web/20190924144712/https://www.theguardian.com/world/2000/mar/24/nuclear.uk |url-status=live }}

=2005 THORP plant leak=

On 19 April 2005, around {{convert|83000|L|impgal usgal|abbr=off}} of hot nitric acid containing dissolved radioisotopes was discovered to have leaked in the THORP reprocessing plant from a cracked pipe into a huge stainless steel-lined concrete sump chamber built to contain leaks.

A discrepancy between the amount of material entering and exiting the THORP processing system had first been noted in August 2004. Operations staff did not discover the leak until safeguards staff reported the discrepancies. Nineteen{{nbsp}}tonnes of uranium and {{convert|160|kg|abbr=on}} of plutonium dissolved in nitric acid has been pumped from the sump vessel into a holding tank.{{cite web |last=Nuclear Directorate |title=Thermal Oxide Reprocessing Plant (THORP) leak investigation and consent to restart |url=http://www.hse.gov.uk/nuclear/periodic-safety-review/thorp.htm |access-date=9 June 2012 |publisher=Health and Safety Executive |archive-date=8 July 2012 |archive-url=https://web.archive.org/web/20120708212741/http://www.hse.gov.uk/nuclear/periodic-safety-review/thorp.htm |url-status=live }}

No radiation was released to the environment, and no one was injured by the incident, but because of the large escape of radioactivity to the secondary containment the incident was given an International Nuclear Event Scale level 3 categorisation. Sellafield Limited was fined £500,000 for breaching health and safety law. In January 2007, Sellafield was given consent to restart THORP.

=Organ removal inquiry=

In 2007, an inquiry was launched into the removal of tissue from a total of 65 dead nuclear workers, some of whom worked at Sellafield.{{Cite news |date=18 April 2007 |title=Sellafield organ removal inquiry |work=BBC News |url=http://news.bbc.co.uk/2/hi/uk_news/politics/6565409.stm |access-date=18 May 2007 |archive-date=5 May 2007 |archive-url=https://web.archive.org/web/20070505120254/http://news.bbc.co.uk/2/hi/uk_news/politics/6565409.stm |url-status=live }} It has been alleged that the tissue was removed without seeking permission from the relatives of the late workers. Michael Redfern QC was appointed to lead the investigation.{{Cite news |last=Walker |first=Peter |date=10 July 2007 |title=Sellafield body parts scandal |work=The Guardian |location=London |url=https://www.theguardian.com/society/2007/jul/10/health.nuclearindustry |access-date=25 September 2008 |archive-date=5 October 2014 |archive-url=https://web.archive.org/web/20141005105726/http://www.theguardian.com/society/2007/jul/10/health.nuclearindustry |url-status=live }} At the same time The Observer revealed that official documents showed that during the 1960s volunteer workers at Sellafield had participated in secret Cold War experiments to assess the biological effect of exposure to radioactive substances, such as from ingesting caesium-134.{{Cite news |last=Doward |first=Jamie |date=22 April 2007 |title=Revealed: UK nuclear tests on workers |work=The Observer |location=London |url=https://www.theguardian.com/uk/2007/apr/22/nuclear.world |access-date=17 November 2010 |archive-date=31 August 2013 |archive-url=https://web.archive.org/web/20130831052428/http://www.theguardian.com/uk/2007/apr/22/nuclear.world |url-status=live }}

The inquiry final report was published in November 2010,{{Cite report |url=http://www.decc.gov.uk/en/content/cms/news/pn10_119/pn10_119.aspx |title=The Redfern Inquiry into human tissue analysis in UK nuclear facilities |last=Michael Redfern |date=16 November 2010 |publisher=The Stationery Office |isbn=978-0-10-296618-3 |access-date=18 November 2010 |archive-date=21 November 2010 |archive-url=https://web.archive.org/web/20101121005433/http://www.decc.gov.uk/en/content/cms/news/pn10_119/pn10_119.aspx |url-status=live }} reporting that "...body parts had been removed between 1961 and 1992. The deaths of 76 workers – 64 from Sellafield and 12 from other UK nuclear plants – were examined, although the scope of the inquiry was later significantly widened."{{Cite news |last=Brown |first=Jonathan |date=17 November 2010 |title=How Sellafield 'mutilated' its workers' bodies |work=The Independent |location=London |url=https://www.independent.co.uk/news/uk/home-news/how-sellafield-mutilated-its-workers-bodies-2136068.html |access-date=11 September 2017 |archive-date=29 September 2017 |archive-url=https://web.archive.org/web/20170929172129/http://www.independent.co.uk/news/uk/home-news/how-sellafield-mutilated-its-workers-bodies-2136068.html |url-status=live }} The person behind this scheme was Dr Geoffrey Schofield, who became BNFL's Company chief medical officer, and who died in 1985. Sellafield staff did not breach any legal obligation, did not consider their actions untoward, and published the scientific information obtained in peer-reviewed scientific journals. It was the hospital pathologists, who were profoundly ignorant of the law, who breached the Human Tissue Act 1961 by giving Sellafield human organs, without any consents, under an informal arrangement.

=2023 hacking and radioactive leak=

In December 2023, it emerged that Sellafield was the victim to cyber hacking by groups closely linked to Russia and China{{Cite news |last=Isaac |first=Anna |last2=Lawson |first2=Alex |date=2023-12-04 |title=Sellafield nuclear site hacked by groups linked to Russia and China |language=en-GB |work=The Guardian |url=https://www.theguardian.com/business/2023/dec/04/sellafield-nuclear-site-hacked-groups-russia-china |access-date=2023-12-04 |issn=0261-3077}} It was first reported by UK newspaper The Guardian, it is unknown if the malware has yet been eradicated. It is still unknown to the extent of the attack and what the long term effects are.

The Guardian has since revealed that the Sellafield site has a "worsening leak from a huge silo of radioactive waste" that is likely to continue until 2050.{{Cite news |last=Isaac |first=Anna |last2=Lawson |first2=Alex |date=2023-12-05 |title=Revealed: Sellafield nuclear site has leak that could pose risk to public |language=en-GB |work=The Guardian |url=https://www.theguardian.com/business/2023/dec/05/sellafield-nuclear-site-leak-could-pose-risk-to-public |access-date=2023-12-05 |issn=0261-3077}} The silo in question is the Magnox swarf storage silo and it was reported that scientists were still trying to estimate the risk to the public using statistical modelling.

Health studies in Cumbria and Seascale

In 1983, the Medical Officer of West Cumbria, is said by Paul Foot to have announced that cancer fatality rates were lower around the nuclear plant than elsewhere in Great Britain.Foot, Paul, London Review of Books, "Nuclear Nightmares", August 1988 In the early 1990s, concern was raised in the UK about apparent clusters of leukaemia near nuclear facilities.{{cite web |title=Sellafield, radiation and childhood cancer – shedding light on cancer clusters near nuclear sites |url=https://scienceblog.cancerresearchuk.org/2016/10/31/sellafield-radiation-and-childhood-cancer-shedding-light-on-cancer-clusters-near-nuclear-sites/ |access-date=2019-12-26 |website=Cancer Research UK – Science blog |date=31 October 2016 |language=en |archive-date=14 September 2019 |archive-url=https://web.archive.org/web/20190914004416/https://scienceblog.cancerresearchuk.org/2016/10/31/sellafield-radiation-and-childhood-cancer-shedding-light-on-cancer-clusters-near-nuclear-sites/ |url-status=live }}

A 1997 Ministry of Health report stated that children living close to Sellafield had twice as much{{quantify|date=May 2013}} plutonium in their teeth as children living more than {{convert|100|mi|km}} away. Health Minister Melanie Johnson said the quantities were minute and "presented no risk to public health". This claim, according to a book written by Stephanie Cooke, was challenged by Professor Eric Wright, an expert on blood disorders at the University of Dundee, who said that even microscopic amounts of plutonium might cause cancer.Stephanie Cooke (2009). In Mortal Hands: A Cautionary History of the Nuclear Age, Black Inc., p. 356.

Studies carried out by the Committee on Medical Aspects of Radiation in the Environment (COMARE) in 2003 reported no evidence of raised childhood cancer in general around nuclear power plants, but did report an excess of leukaemia (cancer of the blood or bone) and non-Hodgkin's lymphoma (NHL, a blood cancer) near two other nuclear installations including Sellafield, the Atomic Weapons Establishment Burghfield and UKAEA Dounreay.

COMARE's conclusion was that "the excesses around Sellafield and Dounreay are unlikely to be due to chance, although there is not at present a convincing explanation for them".{{cite web |title=COMARE 10th Report: The incidence of childhood cancer around nuclear installations in Great Britain |url=http://www.comare.org.uk/press_releases/comare_pr10.htm |access-date=25 August 2006 |website=Committee on Medical Aspects of Radiation in the Environment |archive-date=6 October 2006 |archive-url=https://web.archive.org/web/20061006232705/http://www.comare.org.uk/press_releases/comare_pr10.htm |url-status=live }} In earlier reports COMARE had suggested that "a mechanism involving infection may be a significant factor."{{cite web |title=Summary of the work of COMARE as published in its first six reports |url=http://www.comare.org.uk/documents/COMARE1-6reports.pdf |access-date=25 August 2006 |website=Committee on Medical Aspects of Radiation in the Environment |archive-date=26 September 2006 |archive-url=https://web.archive.org/web/20060926045410/http://www.comare.org.uk/documents/COMARE1-6reports.pdf |url-status=live }} The clusters have disappeared in the early 1990s.

{{Blockquote|text=The main finding of the new report was that there was no significantly increased leukaemia and non-Hodgkin lymphoma around Sellafield or Dounreay for the period 1991‐2006|sign=Dr Chris Gibson, chair of COMARE|source=}}

In a study published in the British Journal of Cancer, which also did not find an increase in any other cancers other than Leukemia, the authors of which attempted to quantify the effect population mixing might have on the Seascale leukaemia cluster. In the analysis of childhood leukaemia/NHL in Cumbria, excluding Seascale, they noted that if both parents were born outside the Cumbrian area (incomers), there was a significantly higher rate of leukaemia/NHL in their children. 1181 children were born in the village of Seascale between 1950 and 1989, in children aged 1–14 during this period, the Seascale cluster of 6 observed cases of NHL were noted. Two similarly aged children, born between 1950 and 1989, outside Seascale were also diagnosed with ALL/NHL before the end of 1992. The origin of birth of 11 of the 16 parents of these eight children was known, and found to be; 3 had parents born outside Cumbria and 3 had one parent born outside the UK. The study's authors strongly supported the hypothesis that the risk of ALL/NHL, in particular in the younger age group, increases with increased exposure to population mixing during gestation or early in life. Although they determined that the exact mechanism by which it causes these malignancies, apart from Kinlen's infection aetiology{{Cite journal |last=Kinlen |first=LJ |year=1997 |title=Infection and childhood leukaemia near nuclear sites |journal=The Lancet |volume=349 |issue=9066 |page=1702 |doi=10.1016/S0140-6736(05)62679-7 |pmid=9186413 |s2cid=32746968 |doi-access=free }} that was mentioned, remained unknown, concluding that the possibility of additional risk factors in Seascale remains.{{Cite journal |last1=Dickinson |first1=HO |last2=Parker |first2=L |year=1999 |title=Quantifying the effect of population mixing on childhood leukaemia risk: the Seascale cluster |journal=British Journal of Cancer |volume=81 |issue=1 |pages=144–151 [146, 149] |doi=10.1038/sj.bjc.6690664 |pmc=2374359 |pmid=10487626}}

In an examination of all causes of stillbirth and infant mortality in Cumbria taken as a whole, between 1950 and 1993, 4,325 stillbirths, 3,430 neonatal death and 1,569 lethal congenital anomalies, occurred among 287,993 births. Overall, results did not infer an increased risk of still birth or neonatal death in Cumbria, the rate of these negative outcomes were largely in line with the British baseline rate. However, there was a cautioned connection between a small excess of increased risk of death from lethal congenital anomalies and proximity to municipal waste incinerators and chemical waste crematoriums being noted. With two examples of the latter crematoriums operating in both Barrow-in-Furness and further afield at Carlisle, crematoriums which may have emitted various chemical dioxins during their operation.{{Cite journal |last=Dummer |first=T J B |year=2003 |title=Adverse pregnancy outcomes around incinerators and crematoria in Cumbria, north west England, 1956–93 |journal=J Epidemiol Community Health |volume=57 |issue=6 |pages=456–461 |doi=10.1136/jech.57.6.456 |pmc=1732475 |pmid=12775795 |doi-access=free}}

Objections to reprocessing

=Republic of Ireland=

File:Potassium iodate tablets.jpg tablets]]

Potassium iodate tablets were distributed to every household in Ireland in the wake of 9/11 in case of a terror attack on reprocessing plants and nuclear power stations in Britain. Upon later expert Irish examination in 2007, this was found not to have been justified.[http://www.rpii.ie/Site/Media/Press-Releases/Radioactivity-released-from-Wylfa-nuclear-power-pl.aspx Radiological Protection Institute of Ireland | Media | Press releases | Radioactivity released from Wylfa nuclear power plant is extremely low and of no health significance{{webarchive|url=https://web.archive.org/web/20131017221002/http://www.rpii.ie/Site/Media/Press-Releases/Radioactivity-released-from-Wylfa-nuclear-power-pl.aspx |date=17 October 2013 }}{{cite web|url=https://www.gov.ie/en/press-release/345402-decision-to-discontinue-the-future-distribution-of-iodine-tablets/?referrer=http://www.health.gov.ie/blog/press-release/decision-to-discontinue-the-future-distribution-of-iodine-tablets/|title=Decision to Discontinue the Future Distribution of Iodine Tablets|website=www.gov.ie|date=3 April 2008 |access-date=25 October 2021|archive-date=25 October 2021|archive-url=https://web.archive.org/web/20211025202231/https://www.gov.ie/en/press-release/345402-decision-to-discontinue-the-future-distribution-of-iodine-tablets/?referrer=http%3A%2F%2Fwww.health.gov.ie%2Fblog%2Fpress-release%2Fdecision-to-discontinue-the-future-distribution-of-iodine-tablets%2F|url-status=live}} The Irish Department of Health advised in 2021 that the tablets could be disposed of with municipal waste.

Sellafield has been a matter of consternation in Ireland, with the Irish Government and some of the population concerned at the risk that such a facility may pose to the country. The Irish government has made formal complaints about the facility, and in 2006 came to an agreement with the British Government about the matter, as part of which the Radiological Protection Institute of Ireland and the Garda Síochána (the Irish police force) are now allowed access to the site.{{cite web |date=30 May 2006 |title=Irish Sellafield appeal ruled illegal |url=https://www.theguardian.com/environment/2006/may/30/energy.nuclearindustry |access-date=27 October 2013 |website=The Guardian |archive-date=29 October 2013 |archive-url=https://web.archive.org/web/20131029215031/http://www.theguardian.com/environment/2006/may/30/energy.nuclearindustry |url-status=live }}

=Isle of Man=

The Government of the Isle of Man has also registered protests due to the risk posed by radioactive contamination, due to the proximity of the Isle of Man. The Manx government has called for the site to be shut down.{{Cite news |date=23 November 2009 |title=Celtic League join call to close down Sellafield |work=Isle of Man Today |url=http://www.iomtoday.co.im/news/isle-of-man-news/celtic-league-join-call-to-close-down-sellafield-1-1743816 |url-status=dead |archive-url=https://archive.today/20120915095627/http://www.iomtoday.co.im/news/isle-of-man-news/celtic-league-join-call-to-close-down-sellafield-1-1743816 |archive-date=15 September 2012}}

The Irish and Manx governments have collaborated on this issue, and brought it to the attention of the British-Irish Council.{{Cite news |date=18 April 2009 |title=MANNON/ISLE OF MAN: SELLAFIELD – OPPOSITION RESTATED BY MANX GOVERNMENT |work=agencebretagnepresse.com |url=http://www.agencebretagnepresse.com/fetch.php?id=14814 |url-status=dead |access-date=12 December 2018 |archive-url=https://web.archive.org/web/20130801024557/http://www.agencebretagnepresse.com/fetch.php?id=14814 |archive-date=1 August 2013 |df=dmy-all}}

=Norway=

Similar objections to those held by the Irish government have been voiced by the Norwegian government since 1997. Monitoring undertaken by the Norwegian Radiation Protection Authority has shown that the prevailing sea currents transport radioactive materials leaked into the sea at Sellafield along the entire coast of Norway and water samples have shown up to tenfold increases in such materials as technetium-99.{{Cite journal |last=Brown |first=Paul |date=20 December 1997 |title=Norway fury at UK nuclear waste flood |journal=The Guardian |location=UK |publisher=Guardian Newspapers |page=11}} The Norwegian government is also seeking closure of the facility.{{cite web |title=Norway concerned over reopening of THORP facility at Sellafield |url=http://www.norway.org.uk/policy/news/thorp.htm |access-date=8 January 2009 |publisher=norway.org.uk |archive-date=23 November 2008 |archive-url=https://web.archive.org/web/20081123033432/http://www.norway.org.uk/policy/news/thorp.htm |url-status=live }}

Proposal to establish adjacent power station

{{main|Moorside clean energy hub}}

In February 2009, NuGeneration (NuGen), a consortium of GDF Suez, Iberdrola and Scottish and Southern Energy (SSE), announced plans to build a new nuclear power station of up to 3.6{{nbsp}}GW capacity adjacent to Sellafield. In October 2009, NuGen purchased an option to acquire land around Sellafield from the NDA for £70{{nbsp}}million.{{Cite news |title=Our plans |publisher=NuGeneration |url=http://www.nugeneration.com/our_plan.html |url-status=dead |access-date=15 November 2011 |archive-url=https://web.archive.org/web/20111106192857/http://www.nugeneration.com/our_plan.html |archive-date=6 November 2011 |df=dmy-all}}

In October 2010, the UK government announced that Sellafield was one of the eight possible sites it considered suitable for future nuclear power stations.{{Cite news |date=18 October 2010 |title=Nuclear power: Eight sites identified for future plants |work=BBC News |publisher=BBC |url=https://www.bbc.co.uk/news/uk-politics-11564152 |access-date=18 October 2010 |archive-date=19 October 2010 |archive-url=https://web.archive.org/web/20101019043151/http://www.bbc.co.uk/news/uk-politics-11564152 |url-status=live }} In June 2011, the government confirmed the suitability of the site, and hoped an electricity generating company would choose to build a power station near Sellafield at Moorside by 2025.{{Cite news |date=23 June 2011 |title=New UK nuclear plant sites named |work=BBC News |publisher=BBC |url=https://www.bbc.co.uk/news/uk-13893974 |access-date=23 June 2011 |archive-date=24 June 2011 |archive-url=https://web.archive.org/web/20110624035716/http://www.bbc.co.uk/news/uk-13893974 |url-status=live }} In 2018, this project was terminated when Toshiba decided to close Nugen and withdraw from nuclear power plant construction in the UK.Theconstruction index.co.uk, pub August 2018. retrieved Sept 2019

In June 2020, the UK government along with EDF together with Rolls-Royce announced that Sellafield has been chosen as a site which will house various types of clean nuclear technologies such as EDF's leading EPR reactor together with Rolls-Royce SMR reactors. The site would serve to produce both electricity and clean hydrogen. EDF has stated plans to construct a twin-EPR station similar in design to Hinkley Point C and Sizewell C.{{cite news|url=https://www.bbc.com/news/uk-england-cumbria-53253102 |title=Moorside: Nuclear power schemes proposed for Cumbria site - BBC News |work=BBC News |date= July 2020|accessdate=2022-06-11}} The site will house some of the 16 planned 440{{nbsp}}Mwe SMRs to be deployed across the UK.{{cite web|url=https://www.world-nuclear-news.org/Articles/Nuclear-at-heart-of-proposed-Moorside-clean-energy |title=Nuclear at heart of proposed Moorside clean energy hub : New Nuclear |publisher=World Nuclear News |date=2020-06-30 |accessdate=2022-06-11}}

Notable employees

  • Derrick Bird, gunman from the Cumbria Shootings in 2010. [https://www.independent.co.uk/news/uk/crime/the-grievances-and-grudges-that-drove-derrick-bird-over-the-edge-1991093.html Bird worked at Sellafield until 1990 when he was sacked for an alleged theft of a plank of wood.]

See also

Notes

{{reflist|group=note}}

References

{{reflist}}

Sources

  • {{Cite book |last=Ritchie |first=Berry |title=The Good Builder: The John Laing Story |publisher=James & James |year=1997}}

Further reading

  1. [https://web.archive.org/web/20070211105952/http://www.bellona.org/reports/sellafield Sellafield], Erik Martiniussen, Bellona Foundation, December 2003, {{ISBN|82-92318-08-9}}
  2. [https://web.archive.org/web/20060724180943/http://www.radiochem.org/paper/JN41/j041Tagami.pdf Technetium-99 Behaviour in the Terrestrial Environment – Field Observations and Radiotracer Experiments], Keiko Tagami, Journal of Nuclear and Radiochemical Sciences, Vol. 4, No.1, pp. A1-A8, 2003
  3. The excess of childhood leukaemia near Sellafield: a commentary on the fourth COMARE report, L J Kinlen et al. 1997 J. Radiol. Prot. 17 63–71

=1957 fire=

  • [https://vimeo.com/218766324 John Dunster Memorial Lecture at SRP annual conference 2017, by Prof R Wakeford. Includes radiological aspects of Windscale Fire]
  • [http://www.lakestay.co.uk/1957.htm An article on the Windscale fire, by the Lake District Tourist Board]
  • [http://www.nucleartourist.com/events/windscal.htm Nuclear Tourist]
  • [http://news.bbc.co.uk/onthisday/hi/dates/stories/november/8/newsid_3181000/3181342.stm BBC retrospective on the accident report]

=2005 leak=

  • [https://web.archive.org/web/20070312035923/http://www.neimagazine.com/story.asp?sectionCode=132&storyCode=2029958 Board of Inquiry Report]

=Other=

  • [https://books.google.com/books?id=1t4DAAAAMBAJ&dq=1954+Popular+Mechanics+January&pg=PA74 "Britain's Pioneer Atomic Power Plants."] Popular Mechanics, June 1954, pp.{{nbsp}}74–75, cutaway drawing of facilities.
  • [http://econtent.unm.edu/cdm4/item_viewer.php?CISOROOT=/nuceng&CISOPTR=9&CISOBOX=1&REC=13 Calder Hall], Nuclear Engineering International wall chart, October 1956
  • [http://www.sellafieldstories.org.uk/ Sellafield Stories at Cumbria County Council oral history project]

{{British nuclear power plants}}

{{North West Power Stations}}

{{Energy in the United Kingdom|sources}}

Category:Buildings and structures in Cumbria

Category:Natural gas-fired power stations in England

Category:Military nuclear reactors

Category:Nuclear weapons infrastructure of the United Kingdom

Category:Nuclear reprocessing sites

Category:Radioactive waste repositories

Category:Power stations in North West England

Category:Former nuclear power stations in England