Solobacterium moorei

{{Short description|Species of bacterium}}

{{italic title}}{{Taxobox

| name = Solobacterium moorei

| image = Solobacterium moorei Transmission Electron Microscopy.png

| image_caption = Transmission Electron Microscopy of S. moorei. Scale bar: 1 µm.

| domain = Bacteria

| phylum = Bacillota

| classis = Erysipelotrichi

| ordo = Erysipelotrichales

| familia = Erysipelotrichidae

| genus = Solobacterium

| species = S. moorei

| binomial = Solobacterium moorei

| binomial_authority = Kageyama and Benno 2000{{Cite journal |last1=Kageyama |first1=A. |last2=Benno |first2=Y. |date=2000 |title=Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei Gen. Nov., Sp. Nov |url=https://pubmed.ncbi.nlm.nih.gov/10832964 |journal=Microbiology and Immunology |volume=44 |issue=4 |pages=223–227 |doi=10.1111/j.1348-0421.2000.tb02487.x |issn=0385-5600 |pmid=10832964}}

| synonyms =

| subdivision =

| color = lightgrey

| type_strain =

}}

Solobacterium moorei is a Gram-positive, obligate anaerobic bacillusD.S. Gerber, DS, Haraszthy, VI, Zambon, JJ. (2007). [http://iadr.confex.com/iadr/2007orleans/techprogram/abstract_90579.htm Characterization of Solobacterium moorei Strains from Subjects with Halitosis] {{webarchive|url=https://web.archive.org/web/20070314102107/http://iadr.confex.com/iadr/2007orleans/techprogram/abstract_90579.htm|date=2007-03-14}}, IADR/AADR/CADR 85th General Session and Exhibition (March 21–24, 2007) that contributes to halitosis.{{Cite web |last=Rauscher |first=Megan |date=2008-04-07 |title=Scientists find bug responsible for bad breath |url=http://uk.reuters.com/article/scienceNews/idUKTON77980320080407 |archive-url= https://web.archive.org/web/20080421062046/http://uk.reuters.com/article/scienceNews/idUKTON77980320080407|archive-date= 21 April 2008|access-date=2025-03-31 |website=WaybackMachine}} This bacterium is non-spore forming and commonly found in the oral and intestinal human microbiota.{{Cite journal |last1=Barrak |first1=Ibrahim |last2=Stájer |first2=Anette |last3=Gajdács |first3=Márió |last4=Urbán |first4=Edit |date=2020-10-01 |title=Small, but smelly: the importance of Solobacterium moorei in halitosis and other human infections |journal=Heliyon |volume=6 |issue=10 |pages=e05371 |doi=10.1016/j.heliyon.2020.e05371 |doi-access=free |pmid=33163658 |pmc=7610269 |issn=2405-8440}} The species was previously known as Bulleidia extructa and B. moorei, in the family Erysipelotrichidae before it was reclassified into a new genus.{{Cite journal |last1=Zheng |first1=Guili |last2=Summanen |first2=Paula H. |last3=Talan |first3=David |last4=Bennion |first4=Robert |last5=Rowlinson |first5=Marie-Claire |last6=Finegold |first6=Sydney M. |date=2010-01-13 |title=Phenotypic and molecular characterization of Solobacterium moorei isolates from patients with wound infection |journal=Journal of Clinical Microbiology |volume=48 |issue=3 |pages=873–876 |doi=10.1128/JCM.01381-09 |issn=1098-660X |pmc=2832436 |pmid=20071554}} Kageyama and Benno identified the first strain in human feces as an unclassified Clostridium group RCA59 in 2000.{{cite journal |last1=Kageyama |first1=A |last2=Benno |first2=Y |year=2000 |title=Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei Gen. Nov., Sp. Nov |journal=Microbiology and Immunology |volume=44 |issue=4 |pages=223–7 |doi=10.1111/j.1348-0421.2000.tb02487.x |pmid=10832964 |doi-access=free}}{{Cite journal |last1=Sárvári |first1=Károly Péter |last2=Sántha |first2=Dóra |last3=Kovács |first3=Réka |last4=Körmöndi |first4=Sándor |last5=Pető |first5=Zoltán |last6=Vereb |first6=Tamás |last7=Sztanó |first7=Balázs |date=2020-10-01 |title=Six cases of Solobacterium moorei isolated alone or in mixed culture in Hungary and comparison with previously published cases |url=https://www.sciencedirect.com/science/article/abs/pii/S1075996420300974 |journal=Anaerobe |volume=65 |pages=102241 |doi=10.1016/j.anaerobe.2020.102241 |issn=1075-9964}}

Cell Structure and Molecular Components

S. moorei is a non-motile, rod-shaped bacterium approximately 0.2 μm in width and 0.4-0.7 μm in length. It is frequently found in pairs or chains without flagella.{{Cite journal |last1=Sárvári |first1=Károly Péter |last2=Sántha |first2=Dóra |last3=Kovács |first3=Réka |last4=Körmöndi |first4=Sándor |last5=Pető |first5=Zoltán |last6=Vereb |first6=Tamás |last7=Sztanó |first7=Balázs |date=2020-10-01 |title=Six cases of Solobacterium moorei isolated alone or in mixed culture in Hungary and comparison with previously published cases |url=https://www.sciencedirect.com/science/article/abs/pii/S1075996420300974 |journal=Anaerobe |volume=65 |pages=102241 |doi=10.1016/j.anaerobe.2020.102241 |issn=1075-9964}}

S. moorei have hydrophobic adhesins to attach to the lipophilic molecules of oral epithelial cells.{{Cite journal |last1=Barrak |first1=Ibrahim |last2=Stájer |first2=Anette |last3=Gajdács |first3=Márió |last4=Urbán |first4=Edit |date=2020-10-01 |title=Small, but smelly: the importance of Solobacterium moorei in halitosis and other human infections |journal=Heliyon |volume=6 |issue=10 |pages=e05371 |doi=10.1016/j.heliyon.2020.e05371 |doi-access=free |pmid=33163658 |pmc=7610269 |issn=2405-8440}} These adhesins allow them to form biofilms and contribute to halitosis.{{Cite journal |last1=Morin |first1=Marie-Pierre |last2=Bedran |first2=Telma Blanca Lombardo |last3=Fournier-Larente |first3=Jade |last4=Haas |first4=Bruno |last5=Azelmat |first5=Jabrane |last6=Grenier |first6=Daniel |date=2015-03-10 |title=Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei |journal=BMC Complementary and Alternative Medicine |volume=15 |pages=48 |doi=10.1186/s12906-015-0557-z |doi-access=free |issn=1472-6882 |pmc=4415245 |pmid=25880992}} Green tea extract, containing epigallocatechin-3-gallate (EGCG), inhibits S. moorei biofilm formation and reduces its ability to attach to oral epithelial cells.

Genetic Composition

File:GeneOntologySMoorei.png

The sequenced genome of S. moorei is a single linear chromosome spanning 2,615,268 base pairs with a GC content of 37.2%.{{Cite journal |last1=Oshibuchi |first1=Kota |last2=Yang |first2=Jiayue |last3=Obana |first3=Nozomu |last4=Fukuda |first4=Shinji |last5=Arakawa |first5=Kazuharu |date=2023-11-29 |title=Complete genome sequence of Solobacterium moorei JCM 10645T isolated from a human stool sample |journal=Microbiology Resource Announcements |volume=13 |issue=1 |pages=e00965–23 |doi=10.1128/MRA.00965-23 |pmc=10793284 |pmid=38014937}}

Metabolism and Molecular Pathways

Most strains can ferment fructose, galactose, glucose, maltose, and ribose and hydrolyze esculin. They exhibit α-galactosidase and α-glucosidase activity to catalyze the breakdown of carbohydrates into simpler sugars.{{Cite journal |last1=Pedersen |first1=Rune Micha |last2=Holt |first2=Hanne Marie |last3=Justesen |first3=Ulrik Stenz |date=2011-07-01 |title=Solobacterium moorei Bacteremia: Identification, Antimicrobial Susceptibility, and Clinical Characteristics |journal=Journal of Clinical Microbiology |volume=49 |issue=7 |pages=2766–2768 |doi=10.1128/jcm.02525-10 |pmc=3147872 |pmid=21525228}} S. moorei produces acetic acid in glucose fermentation and volatile sulfur compounds (VSCs) in anaerobic respiration. Additionally, β-Galactosidase activity is present in the bacterium, which is directly associated with oral malodor when present in the saliva due to volatile compound release.{{Cite journal |last1=Bachtiar |first1=Boy Muchlis |last2=Soeroso |first2=Yuniarti |last3=Sunarto |first3=Hari |last4=Maitimu |first4=Fergy Christin |last5=Bachtiar |first5=Endang Winiati |date=2022-03-01 |title=Relationships between Solobacterium moorei and Prevotella intermedia in subgingival microbiota of periodontitis patients with halitosis: A preliminary study using qPCR |journal=The Saudi Dental Journal |volume=34 |issue=3 |pages=211–219 |doi=10.1016/j.sdentj.2022.02.003 |pmid=35935717 |pmc=9346948 |issn=1013-9052}}{{Cite journal |last1=Teixeira Essenfelder |first1=Lucimari |last2=Gomes |first2=Anderson Albino |last3=Coimbra |first3=Jefferson Luis Meirelles |last4=Moreira |first4=Marcelo Alves |last5=Ferraz |first5=Sandra Maria |last6=Miquelluti |first6=David José |last7=Felippe da Silva |first7=Gustavo |last8=Magalhães |first8=Maria de Lourdes Borba |date=2021-07-01 |title=Salivary β-glucosidase as a direct factor influencing the occurrence of halitosis |url=https://www.sciencedirect.com/science/article/pii/S2405580821000595 |journal=Biochemistry and Biophysics Reports |volume=26 |pages=100965 |doi=10.1016/j.bbrep.2021.100965 |issn=2405-5808|pmc=7941027 }}

S. moorei likely has a homolog of the Methionine Gamma-Lyase (MegL) enzyme, which can produce hydrogen sulfide. This enzyme acts as a catalyst to degrade amino acids containing sulfur, leading to the formation of volatile sulfur compounds.

Pathogenesis

S. moorei is an opportunistic pathogen, and infections outside of halitosis are often observed in patients with cancer or a suppressed immune system. This pathogen has contributed to bloodstream and wound infections, with bacteremia as the most frequently reported infection caused by S. moorei.{{Cite journal |last1=Alauzet |first1=Corentine |last2=Aujoulat |first2=Fabien |last3=Lozniewski |first3=Alain |last4=Brahim |first4=Safa Ben |last5=Domenjod |first5=Chloé |last6=Enault |first6=Cécilia |last7=Lavigne |first7=Jean-Philippe |last8=Marchandin |first8=Hélène |date=2021-06-05 |title=A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature |journal=Microorganisms |language=en |volume=9 |issue=6 |page=1229 |doi=10.3390/microorganisms9061229 |doi-access=free |pmid=34198943 |pmc=8229177 }} Osteoarticular and skin and soft tissue infections (SSTIs) have also been reported in association with this bacteria.

Tumor Cell Signaling

File:Progression_of_Colorectal_Cancer_by_S._moorei.png

High concentrations of S. moorei were found in colorectal adenomatous polyp tissue, which positively correlated with inflammation in the region.{{Cite journal |last1=Yu |first1=Shoujuan |last2=Wang |first2=Xifan |last3=Li |first3=Ziyang |last4=Jin |first4=Dekui |last5=Yu |first5=Mengyang |last6=Li |first6=Jingnan |last7=Li |first7=Yixuan |last8=Liu |first8=Xiaoxue |last9=Zhang |first9=Qi |last10=Liu |first10=Yinghua |last11=Liu |first11=Rong |last12=Wang |first12=Xiaoyu |last13=Fang |first13=Bing |last14=Zhang |first14=Chengying |last15=Wang |first15=Ran |date=2024-02-17 |title=Solobacterium moorei promotes the progression of adenomatous polyps by causing inflammation and disrupting the intestinal barrier |journal=Journal of Translational Medicine |volume=22 |issue=1 |pages=169 |doi=10.1186/s12967-024-04977-3 |doi-access=free |pmid=38368407 |pmc=10874563 |issn=1479-5876}} Research suggests this bacteria promotes the disruption of the intestinal barrier and progression of adenomatous polyps due to inflammation, a risk factor for colorectal cancer.

S. moorei attached to HT-29 colorectal cancer cells and stimulated cell proliferation. This bacteria promotes colorectal cancer growth by binding to integrin α2 and integrin β1 on tumor cells through its Cna B-type domain-containing protein.{{Cite journal |last1=Chen |first1=Yan |last2=Qin |first2=Ying |last3=Fan |first3=Tingting |last4=Qiu |first4=Cheng |last5=Zhang |first5=Yijie |last6=Dai |first6=Mengmeng |last7=Zhou |first7=Yaoyao |last8=Sun |first8=Qinsheng |last9=Guo |first9=Yuan |last10=Hao |first10=Yue |last11=Jiang |first11=Yuyang |date=2025-01-27 |title=Solobacterium moorei promotes tumor progression via the Integrin α2/β1-PI3K-AKT-mTOR-C-myc signaling pathway in colorectal cancer |url=https://www.ijbs.com/v21p1497.htm |journal=International Journal of Biological Sciences |language=en |volume=21 |issue=4 |pages=1497–1512 |doi=10.7150/ijbs.102742 |pmid=39990665 |issn=1449-2288|pmc=11844286 }} This activates the PI3K-AKT-mTOR-C-myc signaling pathway via phosphorylated Focal Adhesion Kinase (phospho-FAK), leading to tumor progression due to promotion of cell survival and reduction of cell apoptosis. Small interfering RNA (siRNA) was used to silence the genes integrin α2 and integrin β1, reducing the expression of the integrin subunits. Blocking integrin α2/β1 stopped S. moorei's cancer-promoting effects in lab and mice studies.

Identification Techniques

S. moorei is a slow-growing bacterium and is difficult to cultivate. Traditional bacterial phenotypic testing cannot identify this bacterium accurately. The only truly reliable method to recognize this bacterium is 16S rRNA gene sequencing; however, Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is a more accessible method. Additionally, DNA probe assays can detect S. moorei strains.{{Cite journal |last1=Yoshihide |first1=Furuichi |last2=Mana |first2=Fuchigami |last3=Osamu |first3=Tsuzukibashi |date=2020 |title=Isolation and identification methods for Solobacterium moorei involved in halitosis |url=https://ir.tdc.ac.jp/irucaa/bitstream/10130/5199/1/12_11.pdf |journal=Journal of the Japanese Society of Oral Examination |volume=12 |issue=1 |pages=11–21 |via=Institutional Resources for Unique Collection and Academic Archives at Tokyo Dental College}}

References

{{Reflist}}