Stanley Norman Cohen
{{Short description|American geneticist (born 1935)}}
{{Infobox scientist
| name = Stanley Norman Cohen
| image = Stanley Norman Cohen DSC 2027.jpg
| image_size =
| caption = Stanley Norman Cohen, 2016
| birth_date = {{birth date and age|1935|02|17}}
| birth_place = Perth Amboy, New Jersey
| death_date =
| death_place =
| residence =
| citizenship =
| nationality = American
| ethnicity =
| field = Genetics
| work_institutions = Stanford University
| alma_mater = Rutgers University, University of Pennsylvania
| thesis_title =
| thesis_url =
| thesis_year =
| doctoral_advisor =
| doctoral_students = Kelly Ten Hagen
| known_for =
| author_abbrev_bot =
| author_abbrev_zoo =
| influences =
| influenced =
| prizes = National Medal of Science, Wolf Prize in Medicine
| religion =
| footnotes =
| signature =
}}
Stanley Norman Cohen (born February 17, 1935) is an American geneticist{{cite web|last1=Hughes|first1=Sally Smith|title=Stanley N. Cohen SCIENCE, BIOTECHNOLOGY, and RECOMBINANT DNA: A PERSONAL HISTORY (Oral history)|url=http://digitalassets.lib.berkeley.edu/roho/ucb/text/cohen_stanley.pdf|website=Regional Oral History Office, The Bancroft Library, University of California |location=Berkeley, California|date=1995}} and the Kwoh-Ting Li Professor in the Stanford University School of Medicine.{{cite web | url=https://med.stanford.edu/profiles/stanley-cohen | title=Stanford School of Medicine Profiles: Stanley N. Cohen, MD | publisher=Stanford School of Medicine | access-date=November 17, 2014}} Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetical engineering.{{cite book|last1=Yount|first1=Lisa|title=A to Z of biologists|date=2003|publisher=Facts on File|location=New York|isbn=978-0816045419|pages=47–49|url=https://books.google.com/books?id=pOdHrsTZ-RYC&pg=PA46|access-date=4 May 2016}}{{cite journal|last1=Cohen|first1=S. N.|title=DNA cloning: A personal view after 40 years|journal=Proceedings of the National Academy of Sciences|date=16 September 2013|volume=110|issue=39|pages=15521–15529|doi=10.1073/pnas.1313397110|pmc=3785787|pmid=24043817|bibcode=2013PNAS..11015521C|doi-access=free}} Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine. According to immunologist Hugh McDevitt, "Cohen's DNA cloning technology has helped biologists in virtually every field". Without it, "the face of biomedicine and biotechnology would look totally different." Boyer cofounded Genentech in 1976 based on their work together, but Cohen was a consultant for Cetus Corporation and declined to join.{{Cite book |last=Berlin |first=Leslie |author-link=Leslie Berlin |url=https://www.worldcat.org/oclc/1008569018 |title=Troublemakers : Silicon Valley's Coming of Age |date=2017 |isbn=978-1-4516-5150-8 |edition=1st |location=New York |oclc=1008569018 |page=199}} In 2022, Cohen was found guilty of having committed fraud in misleading investors into a biotechnology company he founded in 2016, and paid $29 million in damages.{{Cite web |date=2022-12-21 |title=Stanford professor pays $29M in fraud case |url=https://stanforddaily.com/2022/12/21/stanford-professor-pays-29m-in-fraud-case/ |access-date=2023-04-16 |language=en-US}}
Early life
Cohen was born in Perth Amboy, New Jersey. He graduated from Rutgers University with a B.S. in 1956, and received his M.D. from the University of Pennsylvania School of Medicine in 1960. Cohen then held internships and fellowships at various institutions, including Mount Sinai Hospital in New York City, University Hospital in Ann Arbor, Michigan, and Duke University Hospital in Durham, North Carolina. During a residency at the National Institute for Arthritis and Metabolic Diseases, he decided to combine basic research with a clinical practice.{{cite web|title=Biography 34: Stan Norman Cohen (1935 - )|url=https://www.dnalc.org/view/16720-Biography-34-Stan-Norman-Cohen-1935-.html|website=DNA Learning Center|publisher=Cold Spring Harbor Laboratory|access-date=6 May 2016}} In 1967 he was a postdoctoral researcher at the Albert Einstein College of Medicine.{{cite web|title=Cohen, Stanley N. (1935- )|url=http://www.encyclopedia.com/doc/1G2-3409800137.html|website=World of Microbiology and Immunology|publisher=Encyclopedia.com|date=2003}}
Career
File:Stanley Cohen - National Medal of Science, 1988.webm
Cohen joined the faculty of Stanford University in 1968. He was appointed as a professor of medicine in 1975, and as a professor of genetics in 1977. In 1993, he became the Kwoh-Ting Li professor of genetics.
At Stanford he began to explore the field of bacterial plasmids, seeking to understand how the genes of plasmids could make bacteria resistant to antibiotics. At a conference on plasmids in 1972, he met Herbert W. Boyer and discovered that their interests and research were complementary. Plasmids were sent back and forth between Stanley Cohen, Annie C. Y. Chang, and others at Stanford, and Herbert Boyer and Robert B. Helling at the University of California, San Francisco. The Stanford researchers isolated the plasmids, and sent them to the San Francisco team, who cut them using the restriction enzyme EcoRI. The fragments were analyzed and sent back to Stanford, where Cohen's team joined them and introduced them into Escherichia coli. Both laboratories then isolated and analyzed the newly created recombinant plasmids.{{cite web|title=Herbert W. Boyer and Stanley N. Cohen|url=https://www.sciencehistory.org/historical-profile/herbert-w-boyer-and-stanley-n-cohen|website=Science History Institute |date=June 2016|access-date=21 March 2018}}
This collaboration, in particular the 1973 publication of "Construction of biologically functional bacterial plasmids in vitro" by Cohen, Chang, Boyer and Helling, is considered a landmark in the development of methods to combine and transplant genes.{{cite journal|last1=Cohen|first1=SN|last2=Chang|first2=AC|last3=Boyer|first3=HW|last4=Helling|first4=RB|title=Construction of biologically functional bacterial plasmids in vitro.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=November 1973|volume=70|issue=11|pages=3240–4|pmid=4594039|doi=10.1073/pnas.70.11.3240|pmc=427208|bibcode=1973PNAS...70.3240C|doi-access=free}}{{cite web|last1=Kiermer|first1=Veronique|title=Milestone 2 (1967, 1972) Discovery of DNA ligase; Cloning The dawn of recombinant DNA|url=http://www.nature.com/milestones/miledna/full/miledna02.html|website=NATURE Milestones|access-date=5 May 2016}} Not only were different plasmids from E. coli successfully joined and inserted back into E. coli cells, but those cells replicated and carried forward the new genetic information. Subsequent experiments that transferred Staphylococcus plasmid genes into E. coli demonstrated that genes could be transplanted between species.{{cite journal|last1=Chang|first1=Annie C. Y.|last2=Cohen|first2=Stanley N.|title=Genome Construction Between Bacterial Species In Vitro: Replication and Expression of Staphylococcus Plasmid Genes in Escherichia coli|journal=Proceedings of the National Academy of Sciences of the United States of America|date=1974|volume=71|issue=4|pages=1030–1034|pmc=388155|doi=10.1073/pnas.71.4.1030|pmid=4598290|bibcode=1974PNAS...71.1030C|doi-access=free}} These discoveries signaled the birth of genetic engineering, and earned Cohen a number of significant awards, beginning with the Albert Lasker Award for Basic Medical Research in 1980 for "his imaginative and persevering studies of bacterial plasmids, for discovering new opportunities for manipulating and investigating the genetics of cells, and for establishing the biological promise of recombinant DNA methodology."
In 1976, Cohen co-authored a proposal for uniform nomenclature for bacterial plasmids (with Royston C. Clowes, Roy Curtiss III, Naomi Datta, Stanley Falkow and Richard Novick).{{cite journal|last1=Novick|first1=Richard P.|last2=Clowes|first2=R C|last3=Cohen|first3=S N|last4=Curtiss, 3rd|first4=R|last5=Datta|first5=N|last6=Falkow|first6=S|title=Uniform Nomenclature for Bacterial Plasmids: A Proposal|journal=Bacteriological Reviews|date=1976|volume=40|issue=1|pages=168–189|doi=10.1128/MMBR.40.1.168-189.1976|pmc=413948|pmid=1267736}} From 1978 to 1986, Cohen served as chair of the Department of Genetics at Stanford.{{cite book|title=The international who's who 2004|date=2003|publisher=Europa|location=London|page=340|url=https://books.google.com/books?id=sR4Ch1dMe8IC&pg=PA340|access-date=6 May 2016|isbn=9781857432176}}
During the 1970s and 1980s, Cohen was an active proponent of the potential benefits of DNA technology. He was a signatory of the "Berg letter" in 1974, which called for a voluntary moratorium on some types of research pending an evaluation of risk.{{cite journal|last1=Berg|first1=Paul|last2=Baltimore|first2=David|last3=Boyer|first3=Herbert W.|last4=Cohen|first4=Stanley N. |display-authors=etal |title=Potential Biohazards of Recombinant DNA Molecules|journal=Science|date=1974|volume=185|issue=4148|page=303|url=https://profiles.nlm.nih.gov/ps/access/DJBBSB.pdf|doi=10.1126/science.185.4148.303|pmid=4600381|pmc=388511|bibcode=1974Sci...185..303B}} He also attended the Asilomar Conference on Recombinant DNA in 1975, and was reportedly uncomfortable with the process and tone of the meeting.{{cite book|last1=Grace|first1=Katja|title=The Asilomar Conference: A Case Study in Risk Mitigation|date=2015|publisher=Machine Intelligence Research Institute|location=Berkeley, CA|url=https://intelligence.org/files/TheAsilomarConference.pdf}}{{cite book|last1=Bourne|first1=Henry R.|title=Paths to innovation : discovering recombinant DNA, oncogenes, and prions in one medical school, over one decade|date=2011|publisher=University of California Medical Humanities Consortium|location=San Francisco|isbn=9780983463924}} He was vocal in the recombinant DNA controversy as the United States government attempted to develop policies for DNA research. Government efforts resulted in the creation of the Recombinant DNA Advisory Committee and the publication of Recombinant DNA research guidelines in 1976, as well as later reports and recommendations.Committee on the Independent Review and Assessment of the Activities of the NIH Recombinant DNA Advisory Committee; Board on Health Sciences Policy; Institute of Medicine; Lenzi RN, Altevogt BM, Gostin LO, editors. ''[https://www.ncbi.nlm.nih.gov/books/NBK195888/ Oversight and Review of Clinical Gene Transfer Protocols: Assessing the Role of the Recombinant DNA Advisory Committee]. Washington (DC): National Academies Press (US); 2014 Mar 27. B, Historical and Policy Timelines for Recombinant DNA Technology. Cohen supported the Baltimore-Campbell proposal, arguing that recommended containment levels for certain types of research should be lowered on the grounds that little risk was involved, and that the proposal should be "a non-regulating code of standard practice."{{cite book|last1=Office of the Director|title=Recombinant DNA research : documents relating to "NIH guidelines for research involving recombinant DNA molecules|date=1976|publisher=National Institutes of Health (U.S.)|url=https://archive.org/details/recombinantdnare07nati|access-date=6 May 2016}}
Today, Cohen is a professor of genetics and medicine at Stanford, where he works on a variety of scientific problems involving cell growth and development, including mechanisms of plasmid inheritance and evolution. He has continued to study plasmid involvement in antibiotic resistance.{{cite news|last1=Wang|first1=Bruce|title=Cohen: DNA genius on the Farm|url=http://stanforddailyarchive.com/cgi-bin/stanford?a=d&d=stanford19991110-01.2.5|work=The Stanford Daily|volume=216|number=38|date=10 November 1999}} In particular, he studies mobile genetic elements such as transposons which can "jump" between strains of bacteria.{{cite journal|last1=Cohen|first1=Stanley N.|last2=Shapiro|first2=James A.|title=Transposable Genetic Elements|journal=Scientific American|date=1980|volume=242|issue=2|pages=40–49|doi=10.1038/scientificamerican0280-40|pmid=6246575|bibcode=1980SciAm.242b..40C|s2cid=6562135 |url=http://shapiro.bsd.uchicago.edu/Cohen%26Shapiro.scientificamerican0280-40.pdf|access-date=6 May 2016}}{{cite book|last1=Guilfoile|first1=Patrick G.|last2=Alcamo|first2=Edward|title=Antibiotic-resistant bacteria|date=2006|publisher=Chelsea House|location=New York|isbn=978-0791091883|url=https://books.google.com/books?id=umo88KrCZDkC&pg=PA65}}{{cite journal|last1=Koonin|first1=Eugene V.|last2=Krupovic|first2=Mart|title=A Movable Defense|journal=The Scientist|date=January 1, 2015|url=http://www.the-scientist.com/?articles.view/articleNo/41702/title/A-Movable-Defense/|access-date=6 May 2016}} He has developed techniques for studying the behavior of genes in eukaryotic cells using "reporter genes".{{cite journal|last1=Brenner|first1=D. G.|last2=Lin-Chao|first2=S.|last3=Cohen|first3=S. N.|title=Analysis of mammalian cell genetic regulation in situ by using retrovirus-derived "portable exons" carrying the Escherichia coli lacZ gene.|journal=Proceedings of the National Academy of Sciences|date=1 July 1989|volume=86|issue=14|pages=5517–5521|doi=10.1073/pnas.86.14.5517|pmid=2501787|pmc=297654|bibcode=1989PNAS...86.5517B|doi-access=free}}
= Plasmid pSC101 =
File:Stanley Norman Cohen's Genetic Engineering Laboratory, 1973 - NMAH.jpg]]
{{external media | width = 210px | float = right | headerimage= 210px | video1 = Electron micrograph of a bacterial DNA plasmid, [https://www.nsf.gov/news/special_reports/medalofscience50/stanleycohen.jsp “Medal of Science 50 Videos -- Stanley Cohen”], National Science Foundation | video2 = [https://www.dnalc.org/view/15476-mechanism-of-recombination-3d-animation-with-with-basic-narration.html “Mechanism of Recombination, 3D animation with basic narration“], DNA Learning Center }}
Stanley Cohen and Herbert Boyer made what would be one of the first genetic engineering experiments, in 1973. They demonstrated that the gene for frog ribosomal RNA could be transferred into bacterial cells and expressed by them. First they developed a chemical cell transformation method for Escherichia coli,{{Cite journal
| doi = 10.1073/pnas.69.8.2110
| last1 = Cohen | first1 = S. N.
| last2 = Chang | first2 = A. C.
| last3 = Hsu | first3 = L.
| title = Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA
| journal = Proceedings of the National Academy of Sciences of the United States of America
| volume = 69
| issue = 8
| pages = 2110–2114
| year = 1972
| pmid = 4559594
| pmc = 426879
| bibcode = 1972PNAS...69.2110C | doi-access = free }} then they constructed a plasmid, which would be the vector, called pSC101.{{Cite journal
| last1 = Cohen | first1 = S.
| last2 = Chang | first2 = A.
| last3 = Boyer | first3 = H.
| last4 = Helling | first4 = R.
| title = Construction of biologically functional bacterial plasmids in vitro
| journal = Proceedings of the National Academy of Sciences of the United States of America
| volume = 70
| issue = 11
| pages = 3240–3244
| year = 1973
| pmid = 4594039
| pmc = 427208
| doi=10.1073/pnas.70.11.3240
| bibcode = 1973PNAS...70.3240C
| doi-access = free
}} This plasmid contained a single site for the restriction enzyme EcoRI and a gene for tetracycline resistance. The restriction enzyme EcoRI was used to cut the frog DNA into small segments. Next, the frog DNA fragments were combined with the plasmid, which had also been cleaved with EcoRI. The sticky ends of the DNA segments aligned themselves and were afterwards joined using DNA ligase. The plasmids were then transferred into a strain of E. coli and plated onto a growth medium containing tetracycline. The cells that incorporated the plasmid carrying the tetracycline resistance gene grew and formed a colony of bacteria. Some of these colonies consisted of cells that carried the frog ribosomal RNA gene. The scientists then tested the colonies that formed after growth for the presence of frog ribosomal RNA.{{cite book|last1=Thieman|first1=William J.|last2=Palladino|first2=Michael A.|title=Introduction to biotechnology|date=2004|publisher=Pearson/Benjamin Cummings|location=San Francisco|isbn=9780805348255|page=[https://archive.org/details/introductiontobi0000thie/page/55 55]|url=https://archive.org/details/introductiontobi0000thie/page/55}}
=Patents=
Cohen and Boyer were not initially interested in filing patents on their work. In 1974 they agreed to file a joint patent application, administered through Stanford, and benefiting both universities. Three patents were eventually granted for the Boyer-Cohen process, one on the actual process (1980), one on prokaryotic hosts (1984) and one on eukaryotic hosts (1988). Licenses were granted non-exclusively for "a moderate fee".{{rp|166}} Four hundred seventy-eight companies took out licenses, making it one of the university's top five revenue earners. Thousands of products have been developed on the basis of the Boyer-Cohen patents.{{cite book|editor-last1=Granstrand|editor-first1=Ove|title=Economics, Law and Intellectual Property Seeking Strategies for Research and Teaching in a Developing Field|date=2003|publisher=Springer US|location=Boston, MA|isbn=978-1-4757-3750-9|pages=162–166|url=https://books.google.com/books?id=WujcBwAAQBAJ&pg=PA163|access-date=6 May 2016}}{{rp|162,166}} The Boyer-Cohen patents however were controversial due to its scope as they laid claim to the fundamental technology of gene splicing, and led to many challenges to the validity of the patents in the 1980s. The patents were unusual in that they dominated almost all other patents in the field of molecular biotechnology, and in no other industry have there been patents that had such an all-embracing impact. It also made other universities around the world become aware of the commercial value of the scientific work by their academic staff.{{cite book |title=Principles of Gene Manipulation |author=R.W. Old |author2=S.B. Primrose |pages= 56–57 |edition=5th |publisher=Blackwell Scientific Publishing}}
= Nuredis fraud case =
In 2018, Cohen was sued by Christopher Alafi for misleading investors in the biotechnology company Nuredis, and hiding details of the FDA disapproval of a drug Cohen had discovered for Huntington's disease.{{Cite web |title=Stanford prof pays investors in defunct biotech Nuredis $29m |url=https://pharmaphorum.com/news/stanford-prof-pays-investors-in-defunct-biotech-nuredis-29m |access-date=2023-04-16 |website=pharmaphorum |language=en}} Upon losing a long court battle, Cohen was found guilty of "a species of actual fraud and ... deceit", and he admitted to providing wrong testimony in court, although he was not found guilty of intentionally misleading investors. The drug had been approaved and tben withdrawn by the FDA in 1976 for its potentially lethal side effect. As reparations, Cohen paid $29.2 million in damages. In 2024 the court's decision was found to be faulty by the Appeals Court, and was reversed. The damages were ordered entirely refunded to Cohen.
Awards
- 1979 elected to the National Academy of Sciences{{cite web|title=Stanley N. Cohen|url=http://www.nasonline.org/member-directory/members/56831.html|website=The National Academy of Sciences|access-date=5 May 2016}}
- 1980 Albert Lasker Award for Basic Medical Research{{cite web|title=1980 Albert Lasker Basic Medical Research Award Cloning genes by recombinant DNA technology|url=http://www.laskerfoundation.org/awards/show/cloning-genes-by-recombinant-dna-technology/|website=Albert And Mary Lasker Foundation|access-date=5 May 2016}}
- 1981 Wolf Prize in Medicine{{cite book|last1=Gurdon|first1=John|title=Wolf prize in medicine 1978-2008|date=2012|publisher=World Scientific|location=Singapore|isbn=978-981-4291-73-6|volume=1}}{{cite web|title=Stanley N. Cohen Winner of Wolf Prize in Medicine - 1981|url=http://www.wolffund.org.il/index.php?dir=site&page=winners&cs=675&language=eng|website=Wolf Foundation|access-date=5 May 2016}}
- 1988 National Medal of Science from President Reagan{{cite web|title=National Medal Winner - Stanley Cohen|url=http://clinton4.nara.gov/Initiatives/Millennium/capsule/cohen.html|website=The White House|access-date=5 May 2016}}{{cite web|title=The President's National Medal of Science: Recipient Details, Stanley N. Cohen|url=https://www.nsf.gov/od/nms/recip_details.jsp?recip_id=81|website=National Science Foundation|access-date=5 May 2016}}
- 1989 National Medal of Technology (shared with Herbert Boyer) from President Bush{{cite news|last1=Sanders|first1=Robert|title=President Bush awards National Medal of Technology to UC San Francisco's Herbert Boyer and Stanford's Stanley Cohen|url=https://books.google.com/books?id=mvE2AQAAMAAJ&pg=PT136|access-date=5 May 2016|work=UCSF News|date=October 18, 1989}}
- 1996 Lemelson–MIT Prize{{cite web|title=Herbert Boyer and Stanley Cohen|url=http://lemelson.mit.edu/resources/herbert-boyer-and-stanley-cohen|website=Lemelson-MIT|access-date=5 May 2016}}
- 2001 National Inventors Hall of Fame{{cite news|title=Innovators Cohen, Fogarty to enter National Inventors Hall of Fame|url=http://news.stanford.edu/news/2001/may16/inventors-516.html|access-date=4 May 2016|work=Stanford Report|date=May 16, 2001}}
- 2004 Albany Medical Center Prize (shared with Herbert Boyer){{cite news|last1=Adams|first1=Amy|title=Early genetics discovery wins Cohen the Albany Prize|url=http://news.stanford.edu/news/2004/april28/cohen.html|access-date=5 May 2016|work=Stanford Report|date=April 28, 2004}}
- 2004 Shaw Prize in Life Science and Medicine (shared with Herbert Boyer){{cite web|title=Autobiography of Stanley N Cohen|url=http://www.shawprize.org/en/shaw.php?tmp=3&twoid=53&threeid=68&fourid=130&fiveid=116|website=Shaw Prize|access-date=5 May 2016}}{{cite web|title= An Essay on Prize One in Life Science and Medicine 2004: Stanely N Cohen & Herbert W Boyer|url=http://www.shawprize.org/en/shaw.php?tmp=3&twoid=53&threeid=68&fourid=129&fiveid=113|website=Shaw Prize|access-date=5 May 2016}}
- 2006 elected to the American Philosophical Society{{Cite web|title=APS Member History|url=https://search.amphilsoc.org/memhist/search?creator=Stanley+N.+Cohen&title=&subject=&subdiv=&mem=&year=&year-max=&dead=&keyword=&smode=advanced|access-date=2021-05-24|website=search.amphilsoc.org}}
- 2009 Double Helix Medal{{cite web|title=$2.8 million raised at 2009 Double Helix Medals dinner|url=http://www.cshl.edu/news-a-features/28-million-raised-at-2009-double-helix-medals-dinner.html|website=Cold Spring Harbor Laboratory|date=12 November 2009|url-status=dead|archive-url=https://web.archive.org/web/20160602123306/http://www.cshl.edu/news-a-features/28-million-raised-at-2009-double-helix-medals-dinner.html|archive-date=2 June 2016}}
- 2016 Biotechnology Heritage Award, from the Biotechnology Industry Organization (BIO) and the Chemical Heritage Foundation{{cite web|title=Biotechnology Heritage Award|url=https://www.sciencehistory.org/biotechnology-heritage-award|website=Science History Institute|date=31 May 2016|access-date=22 March 2018}}
References
{{Reflist|2}}
External links
- [https://historicalsociety.stanford.edu/publications/cohen-stanley-n Oral History with Stanley N. Cohen], Stanford Historical Society Oral History Program, 1995.
{{Wolf Prize in Medicine}}
{{Shaw Prize}}
{{Winners of the National Medal of Science|biological}}
{{Authority control}}
{{DEFAULTSORT:Cohen, Stanley Norman}}
Category:Physicians from California
Category:Jewish American scientists
Category:Members of the United States National Academy of Sciences
Category:National Medal of Science laureates
Category:National Medal of Technology recipients
Category:People from Perth Amboy, New Jersey
Category:Recipients of the Albert Lasker Award for Basic Medical Research
Category:Rutgers University alumni
Category:Stanford University School of Medicine faculty
Category:Perelman School of Medicine at the University of Pennsylvania alumni
Category:Wolf Prize in Medicine laureates
Category:Members of the American Philosophical Society