Stanton number

{{Short description|Dimensionless parameter in fluid mechanics}}

{{More citations needed|date=December 2009}}

The Stanton number ({{math|St}}), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931).{{rp|476}} It is used to characterize heat transfer in forced convection flows.

Formula

\mathrm{St} = \frac{h}{G c_p} = \frac{h}{\rho u c_p}

where

It can also be represented in terms of the fluid's Nusselt, Reynolds, and Prandtl numbers:

:\mathrm{St} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}}

where

The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).

Mass transfer

Using the heat-mass transfer analogy, a mass transfer St equivalent can be found using the Sherwood number and Schmidt number in place of the Nusselt number and Prandtl number, respectively.

\mathrm{St}_m = \frac{\mathrm{Sh_L}}{\mathrm{Re_L}\,\mathrm{Sc}}{{Cite book|title=Fundamentals of heat and mass transfer.|date=2011|publisher=Wiley|others=Bergman, T. L., Incropera, Frank P.|isbn=978-0-470-50197-9|edition=7th|location=Hoboken, NJ|oclc=713621645}}

\mathrm{St}_m = \frac{h_m}{\rho u}

where

  • St_m is the mass Stanton number;
  • Sh_L is the Sherwood number based on length;
  • Re_L is the Reynolds number based on length;
  • Sc is the Schmidt number;
  • h_m is defined based on a concentration difference (kg s−1 m−2);
  • u is the velocity of the fluid

Boundary layer flow

The Stanton number is a useful measure of the rate of change of the thermal energy deficit (or excess) in the boundary layer due to heat transfer from a planar surface. If the enthalpy thickness is defined as:

\Delta_2 = \int_0^\infty \frac{\rho u}{\rho_\infty u_\infty} \frac{T - T_\infty}{T_s - T_\infty} d y

Then the Stanton number is equivalent to

\mathrm{St} = \frac{d \Delta_2}{d x}

for boundary layer flow over a flat plate with a constant surface temperature and properties.

=Correlations using Reynolds-Colburn analogy=

Using the Reynolds-Colburn analogy for turbulent flow with a thermal log and viscous sub layer model, the following correlation for turbulent heat transfer for is applicable

\mathrm{St} = \frac{C_f / 2}{1 + 12.8 \left( \mathrm{Pr}^{0.68} - 1 \right) \sqrt{C_f / 2}}

where

C_f = \frac{0.455}{\left[ \mathrm{ln} \left( 0.06 \mathrm{Re}_x \right) \right]^2}

See also

Strouhal number, an unrelated number that is also often denoted as \mathrm{St}.

References

{{Reflist|refs=

{{cite book|last1=Bird|first1=R. Byron |last2=Stewart|first2=Warren E. |last3=Lightfoot|first3=Edwin N. |title=Transport Phenomena|url=https://books.google.com/books?id=L5FnNlIaGfcC&pg=PA428|year=2006|publisher=John Wiley & Sons|isbn=978-0-470-11539-8|page=428}}

{{cite journal|last1=Ackroyd|first1=J. A. D.|title=The Victoria University of Manchester's contributions to the development of aeronautics|journal=The Aeronautical Journal|volume=111|issue=1122|year=2016|pages=473–493|issn=0001-9240|doi=10.1017/S0001924000004735|s2cid=113438383|url=http://www.raes.org.uk/pdfs/3164COLOUR.pdf|archive-url=https://web.archive.org/web/20101202210527/http://www.raes.org.uk/pdfs/3164COLOUR.pdf|archive-date=2010-12-02}}

{{cite book|last=Hall|first=Carl W. |title=Laws and Models: Science, Engineering, and Technology|url=https://books.google.com/books?id=EEhpsf6L09gC&pg=PA424|year=2018|publisher=CRC Press|isbn=978-1-4200-5054-7|pages=424–}}

{{cite book|last1=Kays|first1=William |last2=Crawford|first2=Michael |last3=Weigand|first3=Bernhard |title=Convective Heat & Mass Transfer |url=https://books.google.com/books?id=hiEmjxP6hQkC|year=2005|publisher=McGraw-Hill|isbn=978-0-07-299073-7}}

{{Cite web |title=Reynolds number |last=Crawford |first=Michael E. |work=TEXSTAN |date=September 2010 |access-date=2019-08-26 |url= http://www.texstan.com/ef1.php |publisher=Institut für Thermodynamik der Luft- und Raumfahrt - Universität Stuttgart }}

{{cite book|last=Lienhard|first=John H. |title=A Heat Transfer Textbook|url=https://books.google.com/books?id=P8iV6IjNtI8C&pg=PA313|date= 2011|publisher=Courier Corporation|isbn=978-0-486-47931-6|page=313}}

}}

{{NonDimFluMech}}

{{DEFAULTSORT:Stanton Number}}

Category:Dimensionless numbers of fluid mechanics

Category:Dimensionless numbers of thermodynamics

Category:Eponymous numbers

Category:Eponyms in physics

Category:Fluid dynamics