Stephen W. Scherer
{{short description|Canadian scientist (born 1964)}}
{{Use Canadian English|date=April 2019}}
{{Use mdy dates|date=April 2019}}
{{Infobox scientist
| name = Stephen W. Scherer
| image = Stephen W Scherer April2011.jpg
| caption= April 2011
| imagesize =
| birth_name = Stephen Wayne Scherer
| birth_date = {{birth date and age|1964|01|05}}
| birth_place = Windsor, Ontario, Canada
| death_cause =
| patrons =
| alma_mater = University of Waterloo (B.Sc.)
University of Toronto (M.Sc., Ph.D.)
| thesis_title =
| thesis_url =
| thesis_year =
| influences =
| influenced =
| awards =
| spouse = {{marriage|Jo-Anne Herbrick|2002}}
| children = 2
| signature =
| signature_alt =
| website =
| footnotes =
}}
Stephen Wayne "Steve" Scherer (born January 5, 1964) is a Canadian scientist who currently serves as the Chief of Research at The Hospital for Sick Children (SickKids) and distinguished University Professor at the University of Toronto.{{Cite web |title=Complete List of University Professors – Division of the Vice-President & Provost |url=https://www.provost.utoronto.ca/awards-funding/university-professors/complete-list-university-professors/ |access-date=2023-12-22 |language=en}} He obtained his PhD at the University of Toronto under Professor Lap-chee Tsui. Together they founded the Centre for Applied Genomics (TCAG). He is a Senior Fellow of Massey College at the University of Toronto.{{Cite web |date=2015-10-23 |title=Massey News 2014-15 by Massey College - Issuu |url=https://issuu.com/masseycollege/docs/massey-news-2014-2015-v7-web-linked |access-date=2023-12-22 |website=issuu.com |language=en}} In 2014, he was named an esteemed Clarivate (previously Thomson Reuters) Citation laureate in Physiology or Medicine for the “Discovery of large-scale gene copy number variation and its association with specific diseases.”{{Cite press release |agency=Reuters |title=Thomson Reuters Predicts 2014 Nobel Laureates, Researchers Forecast for Nobel Recognition |url=https://www.prnewswire.com/news-releases/thomson-reuters-predicts-2014-nobel-laureates-researchers-forecast-for-nobel-recognition-277028211.html |access-date=2023-12-22 |website=www.prnewswire.com |language=en}}
Background
Scherer was born in Windsor, Ontario, and attended Riverside High School. He played competitive hockey and baseball winning provincial and national championships.{{Cite book |last1=Weepers |first1=Bob |url=https://books.google.com/books?id=WnEfPwAACAAJ |title=We are the Champions : Canadian Championship Sports Teams, Windsor, Ontario, 20th Century |last2=Fame |first2=Windsor/Essex County Sports Hall of |date=2001 |publisher=Windsor/Essex County Sports Hall of Fame and Museum |isbn=978-0-9687666-1-3 |language=en}} He completed his Honours Science Degree at the University of Waterloo, Master of Science and Doctor of Philosophy in the Faculty of Medicine at the University of Toronto.{{Cite web |title=Stephen Scherer – Division of the Vice-President & Provost |url=https://www.provost.utoronto.ca/profile/stephen-scherer/ |access-date=2023-12-22 |language=en}}
Research
Scherer has co-published over 700 scholarly papers and book chapters.[https://pubmed.ncbi.nlm.nih.gov/?term=scherer+sw Stephen W. Scherer]. The National Library of Medicine. He has been on the Thomson Reuters Highly Cited Researcher and World’s Most Influential Scientific Minds list (2015-2018).{{Cite web |title=Hall of Citation Laureates - 2023 |url=https://clarivate.com/citation-laureates/hall-of-citation-laureates/ |access-date=2023-12-27 |website=Clarivate |language=en}}[https://www.ludwigcancerresearch.org/wp-content/uploads/2018/09/37a987a9-e378-4888-8baa-d4ba20efdbfd_tr_scientific_minds_online_final.pdf The World’s Most Influential Scientific Minds list, 2015 (PDF)]. Thomas Reuters. His Google Scholar h-index=164; 134,131 citations.{{Cite web |title=Scherer, Stephen W. |url=https://scholar.google.ca/citations?user=NKTqN4IAAAAJ&hl=en |access-date=2023-12-27 |website=scholar.google.ca}} In 2023, with Ronald D. Cohn and Ada Hamosh, he edited Thompson & Thompson Genetics and Genomics in Medicine, 9th Edition, Elsevier Publishers.{{Cite book |last1=Cohn |first1=Ronald |title=Genetics and Genomics in Medicine |last2=Scherer |first2=Stephen W. |last3=Hamosh |first3=Ada |publisher=Thompson & Thompson |year=2023 |isbn=9780323547628 |edition=9th}}
Chromosome mapping
From 1988 to 2003 with Lap-Chee Tsui, Scherer led studies of human chromosome 7, in particular in the mapping phase of the Human Genome Project.The treasures of chromosome 7. Autumn 2001. The University of Toronto Magazine. Walking the jungles and deserts of chromosome 7. September 2003. Howard Hughes Medical Institute Bulletin.Milestones in Canadian Health Research; Decoding life. 2010. Canadian Institutes of Health Research. Through collaborative research, genes involved in holoprosencephaly,{{Cite journal |last1=Belloni |first1=E. |last2=Muenke |first2=M. |last3=Roessler |first3=E. |last4=Traverse |first4=G. |last5=Siegel-Bartelt |first5=J. |last6=Frumkin |first6=A. |last7=Mitchell |first7=H. F. |last8=Donis-Keller |first8=H. |last9=Helms |first9=C. |last10=Hing |first10=A. V. |last11=Heng |first11=H. H. Q. |last12=Koop |first12=B. |last13=Martindale |first13=D. |last14=Rommens |first14=J. M. |last15=Tsui |first15=L.C. |date=1996-11-01 |title=Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly |url=https://www.nature.com/articles/ng1196-353 |journal=Nature Genetics |volume=14 |issue=3 |pages=353–356 |doi=10.1038/ng1196-353 |pmid=8896571 |s2cid=23432640 |issn=1546-1718|url-access=subscription }}{{Cite journal |last1=Roessler |first1=Erich |last2=Belloni |first2=Elena |last3=Gaudenz |first3=Karin |last4=Jay |first4=Philippe |last5=Berta |first5=Philippe |last6=Scherer |first6=Stephen W. |last7=Tsui |first7=Lap-Chee |last8=Muenke |first8=Maximilian |date=1996-11-01 |title=Mutations in the human Sonic Hedgehog gene cause holoprosencephaly |url=https://www.nature.com/articles/ng1196-357 |journal=Nature Genetics |volume=14 |issue=3 |pages=357–360 |doi=10.1038/ng1196-357 |pmid=8896572 |s2cid=20946001 |issn=1546-1718|url-access=subscription }} renal carcinoma,{{Cite journal |last1=Schmidt |first1=Laura |last2=Duh |first2=Fuh-Mei |last3=Chen |first3=Fan |last4=Kishida |first4=Takeshi |last5=Glenn |first5=Gladys |last6=Choyke |first6=Peter |last7=Scherer |first7=Stephen W. |last8=Zhuang |first8=Zhenping |last9=Lubensky |first9=Irina |last10=Dean |first10=Michael |last11=Allikmets |first11=Rando |last12=Chidambaram |first12=Abi |last13=Bergerheim |first13=Ulf R. |last14=Feltis |first14=J. Timothy |last15=Casadevall |first15=Carme |date=1997-05-01 |title=Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas |url=https://www.nature.com/articles/ng0597-68 |journal=Nature Genetics |language=en |volume=16 |issue=1 |pages=68–73 |doi=10.1038/ng0597-68 |pmid=9140397 |issn=1546-1718|url-access=subscription }} Williams syndrome,{{Cite journal |last1=Osborne |first1=Lucy R. |last2=Li |first2=Martin |last3=Pober |first3=Barbara |last4=Chitayat |first4=David |last5=Bodurtha |first5=Joann |last6=Mandel |first6=Ariane |last7=Costa |first7=Teresa |last8=Grebe |first8=Theresa |last9=Cox |first9=Sarah |last10=Tsui |first10=Lap-Chee |last11=Scherer |first11=Stephen W. |date=2001-10-29 |title=A 1.5 million–base pair inversion polymorphism in families with Williams-Beuren syndrome |journal=Nature Genetics |volume=29 |issue=3 |pages=321–325 |doi=10.1038/ng753 |issn=1061-4036 |pmc=2889916 |pmid=11685205}}{{Cite journal |last1=Somerville |first1=Martin J. |last2=Mervis |first2=Carolyn B. |last3=Young |first3=Edwin J. |last4=Seo |first4=Eul-Ju |last5=del Campo |first5=Miguel |last6=Bamforth |first6=Stephen |last7=Peregrine |first7=Ella |last8=Loo |first8=Wayne |last9=Lilley |first9=Margaret |last10=Pérez-Jurado |first10=Luis A. |last11=Morris |first11=Colleen A. |last12=Scherer |first12=Stephen W. |last13=Osborne |first13=Lucy R. |date=2005-10-20 |title=Severe Expressive-Language Delay Related to Duplication of the Williams–Beuren Locus |journal=New England Journal of Medicine |volume=353 |issue=16 |pages=1694–1701 |doi=10.1056/NEJMoa051962 |issn=0028-4793 |pmc=2893213 |pmid=16236740}} sacral agenesis,{{Cite journal |last1=Ross |first1=Alison J. |last2=Ruiz-Perez |first2=Victor |last3=Wang |first3=Yiming |last4=Hagan |first4=Donna-Marie |last5=Scherer |first5=Steve |last6=Lynch |first6=Sally A. |last7=Lindsay |first7=Susan |last8=Custard |first8=Emily |last9=Belloni |first9=Elena |last10=Wilson |first10=David I. |last11=Wadey |first11=Roy |last12=Goodman |first12=Frances |last13=Orstavik |first13=Karen Helene |last14=Monclair |first14=Tom |last15=Robson |first15=Steve |date=1998-12-01 |title=A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis |url=https://www.nature.com/articles/ng1298_358 |journal=Nature Genetics |volume=20 |issue=4 |pages=358–361 |doi=10.1038/3828 |pmid=9843207 |s2cid=31062371 |issn=1546-1718|url-access=subscription }} citrullinemia,{{Cite journal |last1=Kobayashi |first1=Keiko |last2=Sinasac |first2=David S. |last3=Iijima |first3=Mikio |last4=Boright |first4=Andrew P. |last5=Begum |first5=Laila |last6=Lee |first6=Jeffrey R. |last7=Yasuda |first7=Tomotsugu |last8=Ikeda |first8=Sayaka |last9=Hirano |first9=Ryuki |last10=Terazono |first10=Hiroki |last11=Crackower |first11=Michael A. |last12=Kondo |first12=Ikuko |last13=Tsui |first13=Lap-Chee |last14=Scherer |first14=Stephen W. |last15=Saheki |first15=Takeyori |date=June 1999 |title=The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein |url=https://www.nature.com/articles/ng0699_159 |journal=Nature Genetics |volume=22 |issue=2 |pages=159–163 |doi=10.1038/9667 |pmid=10369257 |s2cid=20137905 |issn=1546-1718|url-access=subscription }} renal tubular acidosis{{Cite journal |last1=Smith |first1=Annabel N. |last2=Skaug |first2=Jennifer |last3=Choate |first3=Keith A. |last4=Nayir |first4=Ahmet |last5=Bakkaloglu |first5=Aysin |last6=Ozen |first6=Seza |last7=Hulton |first7=Sally A. |last8=Sanjad |first8=Sami A. |last9=Al-Sabban |first9=Essam A. |last10=Lifton |first10=Richard P. |last11=Scherer |first11=Stephen W. |last12=Karet |first12=Fiona E. |date=2000-09-01 |title=Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing |url=https://www.nature.com/articles/ng0900_71 |journal=Nature Genetics |volume=26 |issue=1 |pages=71–75 |doi=10.1038/79208 |pmid=10973252 |s2cid=19880326 |issn=1546-1718|url-access=subscription }} and others were identified. His group also discovered the largest gene in the genome.Canadian scientists discover giant gene. February 10th, 2001. Globe and Mail. The sum of this work, including contributions from scientists worldwide and J. Craig Venter's Celera Genomics, generated a map and sequence of human chromosome 7.{{Cite journal |last1=Scherer |first1=Stephen W. |last2=Cheung |first2=Joseph |last3=MacDonald |first3=Jeffrey R. |last4=Osborne |first4=Lucy R. |last5=Nakabayashi |first5=Kazuhiko |last6=Herbrick |first6=Jo-Anne |last7=Carson |first7=Andrew R. |last8=Parker-Katiraee |first8=Layla |last9=Skaug |first9=Jennifer |last10=Khaja |first10=Razi |last11=Zhang |first11=Junjun |last12=Hudek |first12=Alexander K. |last13=Li |first13=Martin |last14=Haddad |first14=May |last15=Duggan |first15=Gavin E. |date=2003-05-02 |title=Human Chromosome 7: DNA Sequence and Biology |journal=Science |language=en |volume=300 |issue=5620 |pages=767–772 |doi=10.1126/science.1083423 |issn=0036-8075 |pmc=2882961 |pmid=12690205|bibcode=2003Sci...300..767S }} In other chromosome studies with Berge Minassian, disease genes causing severe forms of epilepsy were identified.{{Cite journal |last1=Minassian |first1=Berge A. |last2=Lee |first2=Jeffrey R. |last3=Herbrick |first3=Jo-Anne |last4=Huizenga |first4=Jack |last5=Soder |first5=Sylvia |last6=Mungall |first6=Andrew J. |last7=Dunham |first7=Ian |last8=Gardner |first8=Rebecca |last9=Fong |first9=Chung-yan G. |last10=Carpenter |first10=Stirling |last11=Jardim |first11=Laura |last12=Satishchandra |first12=P. |last13=Andermann |first13=Eva |last14=Snead |first14=O. Carter |last15=Lopes-Cendes |first15=Iscia |date=1998-10-01 |title=Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy |url=https://www.nature.com/articles/ng1098_171 |journal=Nature Genetics |volume=20 |issue=2 |pages=171–174 |doi=10.1038/2470 |pmid=9771710 |s2cid=8277795 |issn=1546-1718|url-access=subscription }}{{Cite journal |last1=Chan |first1=Elayne M. |last2=Young |first2=Edwin J. |last3=Ianzano |first3=Leonarda |last4=Munteanu |first4=Iulia |last5=Zhao |first5=Xiaochu |last6=Christopoulos |first6=Constantine C. |last7=Avanzini |first7=Giuliano |last8=Elia |first8=Maurizio |last9=Ackerley |first9=Cameron A. |last10=Jovic |first10=Nebojsa J. |last11=Bohlega |first11=Saeed |last12=Andermann |first12=Eva |last13=Rouleau |first13=Guy A. |last14=Delgado-Escueta |first14=Antonio V. |last15=Minassian |first15=Berge A. |date=2003-09-07 |title=Mutations in NHLRC1 cause progressive myoclonus epilepsy |url=https://www.nature.com/articles/ng1238 |journal=Nature Genetics |volume=35 |issue=2 |pages=125–127 |doi=10.1038/ng1238 |pmid=12958597 |s2cid=32590557 |issn=1546-1718|url-access=subscription }}Gene hunters race against Lafora curse. September 27th, 2003. National Post
Discovery of frequent gene copy number variation (CNV) events
Scherer's research contributed to the description of genome-wide copy number variations (CNVs) of genes, including defining CNV as a highly abundant form of human genetic variation.{{Cite journal |last1=Iafrate |first1=A. John |last2=Feuk |first2=Lars |last3=Rivera |first3=Miguel N. |last4=Listewnik |first4=Marc L. |last5=Donahoe |first5=Patricia K. |last6=Qi |first6=Ying |last7=Scherer |first7=Stephen W. |last8=Lee |first8=Charles |date=2004-08-01 |title=Detection of large-scale variation in the human genome |url=https://www.nature.com/articles/ng1416 |journal=Nature Genetics |language=en |volume=36 |issue=9 |pages=949–951 |doi=10.1038/ng1416 |pmid=15286789 |issn=1546-1718|url-access=subscription }} Previous theory held that humans were 99.9% DNA identical with the small difference in variation almost entirely accounted for by some 3 million single nucleotide polymorphisms (SNPs) per genome.Patchwork people. October 20th, 2005. Nature.{{cite journal |author=Carolyn Abraham |date=November 23, 2006 |title=Study turns human genetics on its head |url=https://www.theglobeandmail.com/life/study-turns-human-genetics-on-its-head/article1110622/?page=all |journal=The Globe and Mail}}{{cite journal |author=Steve Olson |date=November 2007 |title=The changing face of DNA |url=http://www.hhmi.org/sites/default/files/Bulletin/2007/November/nov2007_fulltext.pdf |journal=Howard Hughes Medical Institute Bulletin}} Larger genomic CNV changes involving losses or gains of thousands or millions of nucleotides encompassing one or several genes were thought to be exceptionally rare, and almost always involved in disease.DNA deletions and duplications help determine health. September 7th, 2007. Science. Scherer's observations of frequent CNV events found in the genomes of all cells in every individual, co-published with Canadian-Korean scientist Charles Lee working at Harvard in 2004,Nature. From the archives (2004): [https://blogs.nature.com/freeassociation/2017/04/from-the-archives-2004-large-scale-structural-variation-in-the-human-genome.html Large-scale structural variation in the human genome]. (27 April 2017). opened a new window for studies of natural genetic variation, evolution and disease. Scherer founded the Database of Genomic Variants, a public database utilized by clinical laboratories around the world to interpret CNV and structural variation data in diagnostics.{{Cite web |title=Database of Genomic Variants |url=http://dgv.tcag.ca/dgv/app/home |website=Database of Genomic Variants: A curated catalogue of human genomic structural variation}} Scherer, Lee and collaborators led by Matthew Hurles at the Wellcome Trust Sanger Institute, as well as scientists at the University of Tokyo and Affymetrix Corp then generated CNV maps of human DNA revealing the structural properties, mechanisms of formation, and population genetics of this ubiquitous form of natural variation.{{Cite journal |last1=Redon |first1=Richard |last2=Ishikawa |first2=Shumpei |last3=Fitch |first3=Karen R. |last4=Feuk |first4=Lars |last5=Perry |first5=George H. |last6=Andrews |first6=T. Daniel |last7=Fiegler |first7=Heike |last8=Shapero |first8=Michael H. |last9=Carson |first9=Andrew R. |last10=Chen |first10=Wenwei |last11=Cho |first11=Eun Kyung |last12=Dallaire |first12=Stephanie |last13=Freeman |first13=Jennifer L. |last14=González |first14=Juan R. |last15=Gratacòs |first15=Mònica |date=2006-11-23 |title=Global variation in copy number in the human genome |journal=Nature |volume=444 |issue=7118 |pages=444–454 |doi=10.1038/nature05329 |pmid=17122850 |bibcode=2006Natur.444..444R |issn=1476-4687|pmc=2669898 }}{{Cite journal |last1=Conrad |first1=Donald F. |last2=Pinto |first2=Dalila |last3=Redon |first3=Richard |last4=Feuk |first4=Lars |last5=Gokcumen |first5=Omer |last6=Zhang |first6=Yujun |last7=Aerts |first7=Jan |last8=Andrews |first8=T. Daniel |last9=Barnes |first9=Chris |last10=Campbell |first10=Peter |last11=Fitzgerald |first11=Tomas |last12=Hu |first12=Min |last13=Ihm |first13=Chun Hwa |last14=Kristiansson |first14=Kati |last15=MacArthur |first15=Daniel G. |date=2009-10-07 |title=Origins and functional impact of copy number variation in the human genome |journal=Nature |volume=464 |issue=7289 |pages=704–712 |doi=10.1038/nature08516 |pmid=19812545 |pmc=3330748 |issn=1476-4687}} These studies discovered that CNVs number in the thousands per genome and encompass at least ten times more DNA letters than SNPs, revealing a 'dynamic patchwork' structure of chromosomes. These findings were further substantiated through work with J. Craig Venter's team,{{Cite journal |last1=Khaja |first1=Razi |last2=Zhang |first2=Junjun |last3=MacDonald |first3=Jeffrey R. |last4=He |first4=Yongshu |last5=Joseph-George |first5=Ann M. |last6=Wei |first6=John |last7=Rafiq |first7=Muhammad A. |last8=Qian |first8=Cheng |last9=Shago |first9=Mary |last10=Pantano |first10=Lorena |last11=Aburatani |first11=Hiroyuki |last12=Jones |first12=Keith |last13=Redon |first13=Richard |last14=Hurles |first14=Matthew |last15=Armengol |first15=Lluis |date=2006-11-22 |title=Genome assembly comparison identifies structural variants in the human genome |journal=Nature Genetics |volume=38 |issue=12 |pages=1413–1418 |doi=10.1038/ng1921 |pmid=17115057 |pmc=2674632 |issn=1546-1718}} which contributed to the completion of the genome sequence of an individual.{{Cite journal |last1=Levy |first1=Samuel |last2=Sutton |first2=Granger |last3=Ng |first3=Pauline C. |last4=Feuk |first4=Lars |last5=Halpern |first5=Aaron L. |last6=Walenz |first6=Brian P. |last7=Axelrod |first7=Nelson |last8=Huang |first8=Jiaqi |last9=Kirkness |first9=Ewen F. |last10=Denisov |first10=Gennady |last11=Lin |first11=Yuan |last12=MacDonald |first12=Jeffrey R. |last13=Pang |first13=Andy Wing Chun |last14=Shago |first14=Mary |last15=Stockwell |first15=Timothy B. |date=2007-09-04 |title=The Diploid Genome Sequence of an Individual Human |journal=PLOS Biology |language=en |volume=5 |issue=10 |pages=e254 |doi=10.1371/journal.pbio.0050254 |doi-access=free |issn=1545-7885 |pmc=1964779 |pmid=17803354}}
Autism-associated CNVs and genes
From 2003-2010, Scherer and collaborators went on to discover numerous disease-associated CNVs, and the corresponding disease-susceptibility genes in upwards of 10% of individuals with autism spectrum disorder.{{Cite journal |last1=Szatmari |first1=Peter |last2=Paterson |first2=Andrew D |last3=Zwaigenbaum |first3=Lonnie |last4=Roberts |first4=Wendy |last5=Brian |first5=Jessica |last6=Liu |first6=Xiao-Qing |last7=Vincent |first7=John B |last8=Skaug |first8=Jennifer L |last9=Thompson |first9=Ann P |last10=Senman |first10=Lili |last11=Feuk |first11=Lars |last12=Qian |first12=Cheng |last13=Bryson |first13=Susan E |last14=Jones |first14=Marshall B |last15=Marshall |first15=Christian R |date=2007-02-18 |title=Mapping autism risk loci using genetic linkage and chromosomal rearrangements |journal=Nature Genetics |volume=39 |issue=3 |pages=319–328 |doi=10.1038/ng1985 |pmid=17322880 |pmc=4867008 |issn=1546-1718}}{{Cite journal |last1=Marshall |first1=Christian R. |last2=Noor |first2=Abdul |last3=Vincent |first3=John B. |last4=Lionel |first4=Anath C. |last5=Feuk |first5=Lars |last6=Skaug |first6=Jennifer |last7=Shago |first7=Mary |last8=Moessner |first8=Rainald |last9=Pinto |first9=Dalila |last10=Ren |first10=Yan |last11=Thiruvahindrapduram |first11=Bhooma |last12=Fiebig |first12=Andreas |last13=Schreiber |first13=Stefan |last14=Friedman |first14=Jan |last15=Ketelaars |first15=Cees E. J. |date=2008-01-17 |title=Structural variation of chromosomes in autism spectrum disorder |journal=American Journal of Human Genetics |volume=82 |issue=2 |pages=477–488 |doi=10.1016/j.ajhg.2007.12.009 |issn=1537-6605 |pmc=2426913 |pmid=18252227}}{{Cite journal |last1=Pinto |first1=Dalila |last2=Pagnamenta |first2=Alistair T. |last3=Klei |first3=Lambertus |last4=Anney |first4=Richard |last5=Merico |first5=Daniele |last6=Regan |first6=Regina |last7=Conroy |first7=Judith |last8=Magalhaes |first8=Tiago R. |last9=Correia |first9=Catarina |last10=Abrahams |first10=Brett S. |last11=Almeida |first11=Joana |last12=Bacchelli |first12=Elena |last13=Bader |first13=Gary D. |last14=Bailey |first14=Anthony J. |last15=Baird |first15=Gillian |date=2010-07-09 |title=Functional impact of global rare copy number variation in autism spectrum disorders |journal=Nature |volume=466 |issue=7304 |pages=368–372 |doi=10.1038/nature09146 |pmid=20531469 |pmc=3021798 |bibcode=2010Natur.466..368P |issn=1476-4687|hdl=10400.18/214 |hdl-access=free }} These discoveries have led to broadly available tests facilitating early diagnostic information for autism.{{Cite journal |last1=Berkel |first1=Simone |last2=Marshall |first2=Christian R. |last3=Weiss |first3=Birgit |last4=Howe |first4=Jennifer |last5=Roeth |first5=Ralph |last6=Moog |first6=Ute |last7=Endris |first7=Volker |last8=Roberts |first8=Wendy |last9=Szatmari |first9=Peter |last10=Pinto |first10=Dalila |last11=Bonin |first11=Michael |last12=Riess |first12=Angelika |last13=Engels |first13=Hartmut |last14=Sprengel |first14=Rolf |last15=Scherer |first15=Stephen W. |date=2010-05-16 |title=Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation |url=https://www.nature.com/articles/ng.589 |journal=Nature Genetics |volume=42 |issue=6 |pages=489–491 |doi=10.1038/ng.589 |pmid=20473310 |s2cid=205356656 |issn=1546-1718|url-access=subscription }}{{Cite journal |last1=Noor |first1=Abdul |last2=Whibley |first2=Annabel |last3=Marshall |first3=Christian R. |last4=Gianakopoulos |first4=Peter J. |last5=Piton |first5=Amelie |last6=Carson |first6=Andrew R. |last7=Orlic-Milacic |first7=Marija |last8=Lionel |first8=Anath C. |last9=Sato |first9=Daisuke |last10=Pinto |first10=Dalila |last11=Drmic |first11=Irene |last12=Noakes |first12=Carolyn |last13=Senman |first13=Lili |last14=Zhang |first14=Xiaoyun |last15=Mo |first15=Rong |date=2010-09-15 |title=Disruption at the PTCHD1 Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability |journal=Science Translational Medicine |language=en |volume=2 |issue=49 |pages=49ra68 |doi=10.1126/scitranslmed.3001267 |issn=1946-6234 |pmc=2987731 |pmid=20844286}}{{Cite journal |last1=Vaags |first1=Andrea K. |last2=Lionel |first2=Anath C. |last3=Sato |first3=Daisuke |last4=Goodenberger |first4=McKinsey |last5=Stein |first5=Quinn P. |last6=Curran |first6=Sarah |last7=Ogilvie |first7=Caroline |last8=Ahn |first8=Joo Wook |last9=Drmic |first9=Irene |last10=Senman |first10=Lili |last11=Chrysler |first11=Christina |last12=Thompson |first12=Ann |last13=Russell |first13=Carolyn |last14=Prasad |first14=Aparna |last15=Walker |first15=Susan |date=2012-01-13 |title=Rare deletions at the neurexin 3 locus in autism spectrum disorder |journal=American Journal of Human Genetics |volume=90 |issue=1 |pages=133–141 |doi=10.1016/j.ajhg.2011.11.025 |issn=1537-6605 |pmc=3257896 |pmid=22209245}}{{Cite journal |last1=Sato |first1=Daisuke |last2=Lionel |first2=Anath C. |last3=Leblond |first3=Claire S. |last4=Prasad |first4=Aparna |last5=Pinto |first5=Dalila |last6=Walker |first6=Susan |last7=O'Connor |first7=Irene |last8=Russell |first8=Carolyn |last9=Drmic |first9=Irene E. |last10=Hamdan |first10=Fadi F. |last11=Michaud |first11=Jacques L. |last12=Endris |first12=Volker |last13=Roeth |first13=Ralph |last14=Delorme |first14=Richard |last15=Huguet |first15=Guillaume |date=2012-05-04 |title=SHANK1 Deletions in Males with Autism Spectrum Disorder |journal=American Journal of Human Genetics |volume=90 |issue=5 |pages=879–887 |doi=10.1016/j.ajhg.2012.03.017 |issn=1537-6605 |pmc=3376495 |pmid=22503632}}Science City: Racing to solve the puzzle of autism. January 5th, 2008. Globe and Mail.Canadian breakthrough offers hope on autism. February 19th, 2007. Globe and MailSolving puzzle of son's autism soothes family. January 18th, 2008. Toronto StarResearchers discover genetic patterns of autism. June 9th, 2010. Time MagazineGenetic finding paves way for controversial autism testing. June 10th, 2010. Globe and MailAutism genetics: A breakthrough that sheds light on a medical mystery. June 10th, 2010. The IndependentUnderstanding Autism. Spring 2011. University of Toronto MagazineSpecial Series: Autism's new frontiers. February 17th, 2013. Ottawa Citizen
Similar discoveries to those made in autism were also found in schizophrenia, intellectual disability and other brain disorders (with often the same genes/CNVs involved), thereby establishing a new paradigm to explain how complex human behavioral conditions can have a genetic (biological) basis. With Jacob Vorstman, Christian Schaaf and colleagues, Scherer developed the EAGLE (Evaluation of Autism Gene Link Evidence), which is a highly utilized resource in diagnostic testing for autism.{{Cite web |date=2021-12-10 |title=SFARI {{!}} SFARI Gene to introduce EAGLE, a new ASD-relevance gene scoring system |url=https://www.sfari.org/2021/12/10/sfari-gene-to-introduce-eagle-a-new-asd-relevance-gene-scoring-system/ |access-date=2023-12-27 |website=SFARI |language=en-US}}
Determining the genome architecture underlying autism
Scherer has led the Autism Speaks MSSNG project,{{Cite web |title=MSSNG |url=https://research.mss.ng/ |access-date=2023-12-27 |website=research.mss.ng}} which uses whole genome sequencing to decode the DNA of thousands of families having a diagnosis of autism. The research underpinned the identification of >100 genes and CNVs involved in autism providing explanations of why autism has occurred for approximately 5-20% of families.{{Cite journal |last1=Jiang |first1=Yong-hui |last2=Yuen |first2=Ryan K. C. |last3=Jin |first3=Xin |last4=Wang |first4=Mingbang |last5=Chen |first5=Nong |last6=Wu |first6=Xueli |last7=Ju |first7=Jia |last8=Mei |first8=Junpu |last9=Shi |first9=Yujian |last10=He |first10=Mingze |last11=Wang |first11=Guangbiao |last12=Liang |first12=Jieqin |last13=Wang |first13=Zhe |last14=Cao |first14=Dandan |last15=Carter |first15=Melissa T. |date=2013-08-08 |title=Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing |journal=American Journal of Human Genetics |volume=93 |issue=2 |pages=249–263 |doi=10.1016/j.ajhg.2013.06.012 |issn=1537-6605 |pmc=3738824 |pmid=23849776}}{{Cite journal |last1=Pinto |first1=Dalila |last2=Delaby |first2=Elsa |last3=Merico |first3=Daniele |last4=Barbosa |first4=Mafalda |last5=Merikangas |first5=Alison |last6=Klei |first6=Lambertus |last7=Thiruvahindrapuram |first7=Bhooma |last8=Xu |first8=Xiao |last9=Ziman |first9=Robert |last10=Wang |first10=Zhuozhi |last11=Vorstman |first11=Jacob A. S. |last12=Thompson |first12=Ann |last13=Regan |first13=Regina |last14=Pilorge |first14=Marion |last15=Pellecchia |first15=Giovanna |date=2014-05-01 |title=Convergence of genes and cellular pathways dysregulated in autism spectrum disorders |journal=American Journal of Human Genetics |volume=94 |issue=5 |pages=677–694 |doi=10.1016/j.ajhg.2014.03.018 |issn=1537-6605 |pmc=4067558 |pmid=24768552}}{{Cite journal |last1=Uddin |first1=Mohammed |last2=Tammimies |first2=Kristiina |last3=Pellecchia |first3=Giovanna |last4=Alipanahi |first4=Babak |last5=Hu |first5=Pingzhao |last6=Wang |first6=Zhuozhi |last7=Pinto |first7=Dalila |last8=Lau |first8=Lynette |last9=Nalpathamkalam |first9=Thomas |last10=Marshall |first10=Christian R. |last11=Blencowe |first11=Benjamin J. |last12=Frey |first12=Brendan J. |last13=Merico |first13=Daniele |last14=Yuen |first14=Ryan K. C. |last15=Scherer |first15=Stephen W. |title=Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder |url=https://pubmed.ncbi.nlm.nih.gov/24859339/ |journal=Nature Genetics |date=2014 |volume=46 |issue=7 |pages=742–747 |doi=10.1038/ng.2980 |issn=1546-1718 |pmid=24859339 |s2cid=12729162 |via=PubMed}}{{Cite journal |last1=Tammimies |first1=Kristiina |last2=Marshall |first2=Christian R. |last3=Walker |first3=Susan |last4=Kaur |first4=Gaganjot |last5=Thiruvahindrapuram |first5=Bhooma |last6=Lionel |first6=Anath C. |last7=Yuen |first7=Ryan K. C. |last8=Uddin |first8=Mohammed |last9=Roberts |first9=Wendy |last10=Weksberg |first10=Rosanna |last11=Woodbury-Smith |first11=Marc |last12=Zwaigenbaum |first12=Lonnie |last13=Anagnostou |first13=Evdokia |last14=Wang |first14=Zhuozhi |last15=Wei |first15=John |date=2015-09-01 |title=Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder |url=https://pubmed.ncbi.nlm.nih.gov/26325558/ |journal=JAMA |volume=314 |issue=9 |pages=895–903 |doi=10.1001/jama.2015.10078 |issn=1538-3598 |pmid=26325558}}{{Cite journal |last1=Yuen |first1=Ryan K. C. |last2=Thiruvahindrapuram |first2=Bhooma |last3=Merico |first3=Daniele |last4=Walker |first4=Susan |last5=Tammimies |first5=Kristiina |last6=Hoang |first6=Ny |last7=Chrysler |first7=Christina |last8=Nalpathamkalam |first8=Thomas |last9=Pellecchia |first9=Giovanna |last10=Liu |first10=Yi |last11=Gazzellone |first11=Matthew J. |last12=D'Abate |first12=Lia |last13=Deneault |first13=Eric |last14=Howe |first14=Jennifer L. |last15=Liu |first15=Richard S. C. |title=Whole-genome sequencing of quartet families with autism spectrum disorder |url=https://pubmed.ncbi.nlm.nih.gov/25621899/ |journal=Nature Medicine |date=2015 |volume=21 |issue=2 |pages=185–191 |doi=10.1038/nm.3792 |issn=1546-170X |pmid=25621899 |s2cid=29439880 |via=PubMed}}{{Cite journal |last1=C Yuen |first1=Ryan K. |last2=Merico |first2=Daniele |last3=Bookman |first3=Matt |last4=L Howe |first4=Jennifer |last5=Thiruvahindrapuram |first5=Bhooma |last6=Patel |first6=Rohan V. |last7=Whitney |first7=Joe |last8=Deflaux |first8=Nicole |last9=Bingham |first9=Jonathan |last10=Wang |first10=Zhuozhi |last11=Pellecchia |first11=Giovanna |last12=Buchanan |first12=Janet A. |last13=Walker |first13=Susan |last14=Marshall |first14=Christian R. |last15=Uddin |first15=Mohammed |title=Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder |journal=Nature Neuroscience |date=2017 |volume=20 |issue=4 |pages=602–611 |doi=10.1038/nn.4524 |issn=1546-1726 |pmc=5501701 |pmid=28263302}}{{Cite journal |last1=Trost |first1=Brett |last2=Engchuan |first2=Worrawat |last3=Nguyen |first3=Charlotte M. |last4=Thiruvahindrapuram |first4=Bhooma |last5=Dolzhenko |first5=Egor |last6=Backstrom |first6=Ian |last7=Mirceta |first7=Mila |last8=Mojarad |first8=Bahareh A. |last9=Yin |first9=Yue |last10=Dov |first10=Alona |last11=Chandrakumar |first11=Induja |last12=Prasolava |first12=Tanya |last13=Shum |first13=Natalie |last14=Hamdan |first14=Omar |last15=Pellecchia |first15=Giovanna |title=Genome-wide detection of tandem DNA repeats that are expanded in autism |journal=Nature |date=2020 |volume=586 |issue=7827 |pages=80–86 |doi=10.1038/s41586-020-2579-z |issn=1476-4687 |pmc=9348607 |pmid=32717741|bibcode=2020Natur.586...80T }} These discoveries have enabled faster and more precise diagnoses, early intervention and genetic counselling and have led to the identification of new molecular pathways for the development of therapeutics.{{Cite journal |last1=Cook |first1=Edwin H. |last2=Scherer |first2=Stephen W. |date=2008-10-16 |title=Copy-number variations associated with neuropsychiatric conditions |url=https://pubmed.ncbi.nlm.nih.gov/18923514/ |journal=Nature |volume=455 |issue=7215 |pages=919–923 |doi=10.1038/nature07458 |issn=1476-4687 |pmid=18923514|bibcode=2008Natur.455..919C |s2cid=4377899 }}{{Cite book |last1=Marshall |first1=Christian R. |last2=Scherer |first2=Stephen W. |title=Genomic Structural Variants |date=2012 |chapter=Detection and characterization of copy number variation in autism spectrum disorder |chapter-url=https://pubmed.ncbi.nlm.nih.gov/22228009/ |series=Methods in Molecular Biology (Clifton, N.J.) |volume=838 |pages=115–135 |doi=10.1007/978-1-61779-507-7_5 |issn=1940-6029 |pmid=22228009|isbn=978-1-61779-506-0 }}{{Cite journal |last1=Anagnostou |first1=Evdokia |last2=Zwaigenbaum |first2=Lonnie |last3=Szatmari |first3=Peter |last4=Fombonne |first4=Eric |last5=Fernandez |first5=Bridget A. |last6=Woodbury-Smith |first6=Marc |last7=Brian |first7=Jessica |last8=Bryson |first8=Susan |last9=Smith |first9=Isabel M. |last10=Drmic |first10=Irene |last11=Buchanan |first11=Janet A. |last12=Roberts |first12=Wendy |last13=Scherer |first13=Stephen W. |title=Autism spectrum disorder: advances in evidence-based practice |journal=Canadian Medical Association Journal |date=2014 |volume=186 |issue=7 |pages=509–519 |doi=10.1503/cmaj.121756 |issn=1488-2329 |pmc=3986314 |pmid=24418986}}{{Cite journal |last1=Vorstman |first1=Jacob |last2=Scherer |first2=Stephen W. |title=What a finding of gene copy number variation can add to the diagnosis of developmental neuropsychiatric disorders |url=https://pubmed.ncbi.nlm.nih.gov/33454514/ |journal=Current Opinion in Genetics & Development |date=2021 |volume=68 |pages=18–25 |doi=10.1016/j.gde.2020.12.017 |issn=1879-0380 |pmid=33454514|s2cid=231634644 }} In 2022, Scherer’s team published a comprehensive description of the genomic architecture in autism using whole genome sequencing data available to facilitate research studies in autism.{{Cite journal |last1=Trost |first1=Brett |last2=Thiruvahindrapuram |first2=Bhooma |last3=Chan |first3=Ada J. S. |last4=Engchuan |first4=Worrawat |last5=Higginbotham |first5=Edward J. |last6=Howe |first6=Jennifer L. |last7=Loureiro |first7=Livia O. |last8=Reuter |first8=Miriam S. |last9=Roshandel |first9=Delnaz |last10=Whitney |first10=Joe |last11=Zarrei |first11=Mehdi |last12=Bookman |first12=Matthew |last13=Somerville |first13=Cherith |last14=Shaath |first14=Rulan |last15=Abdi |first15=Mona |date=2022-11-10 |title=Genomic architecture of autism from comprehensive whole-genome sequence annotation |journal=Cell |volume=185 |issue=23 |pages=4409–4427.e18 |doi=10.1016/j.cell.2022.10.009 |issn=1097-4172 |pmid=36368308|doi-access=free |pmc=10726699 }}
Genome science, data and public policy infrastructure
Scherer co-founded the TCAG genome centre at SickKids in 1998. In 2015 with Marco Marra and Steven Jones at the University of British Columbia and Mark Lathrop at McGill University, the three major Canadian genome centres came together as CGEn, which serves as a Major Science Initiative of the Canada Foundation of Innovation.{{Cite web |last=Warner |first=Hillete |date=2022-08-19 |title=CGEn receives $48.9 million in federal funding through the Canada Foundation for Innovation's Major Science Initiatives Fund |url=https://www.cgen.ca/cgen-receives-48-9-million-in-federal-funding-through-the-canada-foundation-for-innovations-major-science-initiatives-fund%EF%BF%BC |website=Canada's national platform for genome sequencing & analysis}} For the 150th anniversary of Canada (2017), he started the CanSeq150 Project to sequence 150 genomes of species most relevant to Canada’s culture/environment/conservation; notable species completed include many of the “canadensis” members such as the Canadian beaver and Canadian wolverine.{{Cite web |title=CanSeq150 |url=https://www.cgen.ca/canseq150-overview |access-date=2023-12-27 |website=Canada's national platform for genome sequencing & analysis |language=en-US}}{{Citation |title=SickKids researchers sequence genome of the Canadian beaver | date=April 25, 2017 |url=https://www.youtube.com/watch?v=UZ8wmutLRGY |access-date=2023-12-27 |language=en}}{{Cite news |date=2017-01-13 |title=Scientists map genome of beaver as gift for Canada's 150th birthday |language=en-CA |work=The Globe and Mail |url=https://www.theglobeandmail.com/news/national/scientists-map-genome-of-beaver-as-gift-for-canadas-150th-birthday/article33617869/ |access-date=2023-12-27}} Canseq 150 is now part of the Canadian Biogenome Project, an international effort aiming to sequence the genetic material for all complex life on earth.{{Cite web |title=Canada BioGenome Project |url=https://www.cgen.ca/biogenome-project |access-date=2023-12-27 |website=Canada's national platform for genome sequencing & analysis |language=en-US}} CGEn also led the Covid-19 host genome sequencing project, which completed 10,000 Canadian genomes in April 2022.{{Cite web |title=Program Overview |url=https://www.cgen.ca/project-overview |access-date=2023-12-27 |website=Canada's national platform for genome sequencing & analysis |language=en-US}}
Scherer and colleagues launched the Personal Genome Project Canada in 2007, a resource of data that supports evaluation of whole genome sequencing in medicine and public health.{{Cite journal |last1=Reuter |first1=Miriam S. |last2=Walker |first2=Susan |last3=Thiruvahindrapuram |first3=Bhooma |last4=Whitney |first4=Joe |last5=Cohn |first5=Iris |last6=Sondheimer |first6=Neal |last7=Yuen |first7=Ryan K. C. |last8=Trost |first8=Brett |last9=Paton |first9=Tara A. |last10=Pereira |first10=Sergio L. |last11=Herbrick |first11=Jo-Anne |last12=Wintle |first12=Richard F. |last13=Merico |first13=Daniele |last14=Howe |first14=Jennifer |last15=MacDonald |first15=Jeffrey R. |date=2018-02-05 |title=The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants |journal=Canadian Medical Association Journal |volume=190 |issue=5 |pages=E126–E136 |doi=10.1503/cmaj.171151 |issn=0820-3946 |pmid=29431110|doi-access=free |pmc=5798982 }}{{Cite news |date=2018-02-03 |title=Cracks in the code: Why mapping your DNA may be less reliable than you think |language=en-CA |work=The Globe and Mail |url=https://www.theglobeandmail.com/technology/science/genetic-testing/article37829424/ |access-date=2023-12-27}} These experiences along Scherer’s advocacy with the Canadian Coalition for Genetic Fairness helped to establish Canada’s Genetic Non-Discrimination Act,{{Cite web |last=Branch |first=Legislative Services |date=2017-05-04 |title=Consolidated federal laws of canada, Genetic Non-Discrimination Act |url=https://laws-lois.justice.gc.ca/eng/acts/G-2.5/index.html |access-date=2023-12-27 |website=laws-lois.justice.gc.ca}} which passed into law on May 4, 2017. He is also Editor-in-Chief of the scientific journal npj Genomic Medicine, which was co-founded in 2016 with Dr. Magdalena Skipper the current Editor-in-Chief of Nature.{{Cite web |title=About the Editors {{!}} npj Genomic Medicine |url=https://www.nature.com/npjgenmed/editors |access-date=2024-03-28 |website=www.nature.com |language=en}}
Media and special presentations
Scherer’s discoveries have appeared in the Globe and Mail, New York Times, Washington Post, The Independent, Time, Newsweek, Scientific American and many other periodicals. He has appeared on the Canadian Broadcasting Corporation (CBC), PBS Newshour, TVO Agenda, and other national TV, radio, and media, including Quirks and Quarks, explaining scientific discoveries.{{Citation |title=CBC Autism Research Story January 26 2015 | date=January 28, 2015 |url=https://www.youtube.com/watch?v=QjXrnhMwKjc |access-date=2023-12-27 |language=en}}{{Cite web |date=2015-10-21 |title=This search engine could help unlock autism's secrets |url=https://www.pbs.org/newshour/show/autism |access-date=2023-12-27 |website=PBS NewsHour |language=en-us}}{{Citation |title=Stephen Scherer: DNA Testing for Autism | date=October 27, 2010 |url=https://www.youtube.com/watch?v=tbUFMf2hHKU |access-date=2023-12-27 |language=en}}The human genome, and Pandora's box. Counterpoint: an interview with Margaret Wente. June 29th, 2000. Globe and Mail.Scherer, SW. By knowing our genomes, we will begin to truly know ourselves. Commentary August 7th, 2007. Globe and Mail.Scherer, SW. Perfect genomics. Question of the Year 2007. Nature Genetics.Scherer, SW. 25 great ideas from great minds. January 4, 2007. Toronto Star.Brainwashed. Rethinking man's genetic makeup. November 2010, The Walrus.Scherer, SW. Genomics is the medium for 21st century biology. Editorial. 2012. Genome 55, v-vi. His research was featured in Roger Martin's book The Design of Business,Martin, Roger (2009). The Reliability Bias: Why Advancing Knowledge Is So Hard--How Making Room for Validity Will Help You Design a Business That Is Better at Innovation. Harvard Business Publishing. Bob Wright’s autobiography the Wright Stuff: from NBC to Autism Speaks,{{Cite book |last=Wright |first=Bob |title=The Wright Stuff: From NBC to Autism Speaks |publisher=RosettaBooks |year=2016 |isbn=978-0795346927}} Steve Silberman’s NeuroTribes: The Legacy of Autism and the Future of Neurodiversity,{{Cite book |last=Silberman |first=Steve |title=Neurotribes: The Legacy of Autism and the Future of Neurodiversity |date=August 23, 2016 |publisher=Avery |isbn=978-0399185618 |edition=2nd}} amongst others. In 2013, he spoke at the Canadian Broadcast Glenn Gould Studio: ‘Cracking the Autism Enigma’,{{Citation |title=Part 1. OBI/CIFAR Public Lecture on Autism, Presented by Autism Speaks | date=March 12, 2013 |url=https://www.youtube.com/watch?v=hlLfuy_auXs |access-date=2023-12-27 |language=en}} and in 2015 was a special guest speaker at the United Nations, New York for World Autism Awareness Day.{{Cite web |title=World Autism Awareness Day, 2 April |url=https://www.un.org/en/events/autismday/events2015.shtml |access-date=2023-12-27 |website=www.un.org |language=en}} He has been featured the Genome Giants series of interviews.{{Cite web |last1=Genomics |first1=Front Line |last2=Gunn |first2=Shannon |date=2022-02-22 |title=Genome Giants: Stephen Scherer, Director, The Centre for Applied Genomics, SickKids |url=https://frontlinegenomics.com/genome-giants-stephen-scherer-director-the-centre-for-applied-genomics-sickkids/ |access-date=2023-12-27 |website=Front Line Genomics |language=en}} He served as the scientific consultant for two documentaries, the MediCinema Film creation Cracking the Code, the continuing saga of genetics,{{Cite web |title=MediCinema - Creative classroom videos & DVDs - CRACKING THE CODE: The Continuing Saga of Genetics |url=http://www.medicinema.com/genetics.html |access-date=2023-12-27 |website=www.medicinema.com}} and the Gemini Award-winning documentary, After Darwin by GalaFilms-Telefilm Canada.{{Citation |title=After Darwin (1999) {{!}} Full Movie {{!}} Lewis Wolpert {{!}} Benno Muller-Hill {{!}} Troy Duster {{!}} Andrea Shugar | date=August 24, 2020 |url=https://www.youtube.com/watch?v=wYppdhSbNqg |access-date=2023-12-27 |language=en}} He also hosts the SickKids Discovery Dialogues which takes attendees behind the scenes of research to discuss their research and the path to scientific discovery.{{Cite web |title=SickKids Discovery Dialogues - YouTube |url=https://www.youtube.com/playlist?list=PLfAK35c0XomtCrHDR1wcaLU2_MXLHGtuY |access-date=2023-12-27 |website=www.youtube.com}}
Honours
- Canada's Top 40 under 40 Award (1999){{Cite web |title=Canada's Top 40 Under 40 - Honourees 1999 |url=https://canadastop40under40.com/honourees-1999.html |access-date=2023-12-27 |website=canadastop40under40.com}}
- Scholar of the Howard Hughes Medical Institute (2002-2007){{Cite web |title=HHMI Awards Canadian, Latin American Research Grants {{!}} HHMI |url=https://www.hhmi.org/news/hhmi-awards-canadian-latin-american-research-grants |access-date=2023-12-27 |website=www.hhmi.org |language=en}}
- Genetics Society of Canada Scientist Award (2002)
- Canadian Institute for Advanced Research Explorer Award (2002){{Cite web |title=Stephen W. Scherer |url=https://cifar.ca/bios/stephen-w-scherer/ |access-date=2023-12-27 |website=CIFAR |language=en-US}}
- Steacie Prize in the Natural Sciences (2003){{Cite web |title=Recipients – Steacie Prize for Natural Sciences |url=https://steacieprize.ca/recipients/ |access-date=2023-12-27 |website=steacieprize.ca}}
- Fellow of the Royal Society of Canada (2007){{Cite web |title=Member Directory |url=https://rsc-src.ca/en/find-rsc-member/results |access-date=2023-12-27 |website=The Royal Society of Canada |language=en}}
- Inaugural Distinguished Science Alumni Award-University of Waterloo (2007){{Cite web |title=Science Alumni of Honour Award: 50th Anniversary {{!}} Science |url=https://uwaterloo.ca/science/alumni-and-friends/science-alumni-awards/50-anniversary-science-alumni-honour-award |access-date=2023-12-27 |website=uwaterloo.ca |language=en}}
- Premier’s Summit Award for Medical Research (2008){{Cite web |title=Ontario Newsroom |url=https://news.ontario.ca/en/backgrounder/672/premiers-summit-award-in-medical-research |access-date=2023-12-27 |website=news.ontario.ca}}
- Fellow of the American Association for the Advancement of Science (AAAS) (2011){{Cite web |title=AAAS Members Elected as Fellows (2011) |url=https://www.aaas.org/news/aaas-members-elected-fellows-2 |website=AAAS}}
- International Significant Sigma Chi Award (2011){{Cite web |title=Distinguished Brothers |url=https://sigmachi.ca/distinguished-sigma-chi-brothers/ |access-date=2023-12-27 |website=Sigma Chi Canadian Foundation |language=en-US}}
- Queen Elizabeth II Diamond Jubilee Medal for unique contributions to Canada (2013){{Cite web |title=Stephen Scherer |url=https://www.gg.ca/en/honours/recipients/126-268714 |access-date=2023-12-27 |website=The Governor General of Canada |language=en}}
- Clarivate (previously Thomson-Reuters) Citation Laureate in Physiology or Medicine (2014) (2020){{Cite web |last=Ubelacker |first=Sheryl |date=September 25, 2014 |title=Stephen Scherer of Toronto's Sick Kids Hospital pegged to win Nobel Prize |url=https://www.cbc.ca/news/health/stephen-scherer-of-toronto-s-sick-kids-hospital-pegged-to-win-nobel-prize-1.2777560 |website=CBC News}}{{Cite web |date=2020-10-07 |title=Stephen W. Scherer |url=https://clarivate.com/webofsciencegroup/citation-laureates/resources/stephen-w-scherer/ |access-date=2023-12-27 |website=Web of Science Group |language=en}}{{Cite news |date=2014-09-24 |title=Toronto Sick Kids geneticist named potential Nobel Prize recipient |language=en-CA |work=The Globe and Mail |url=https://www.theglobeandmail.com/technology/science/toronto-sick-kids-geneticist-on-track-for-nobel-prize/article20780467/ |access-date=2023-12-27}}
- Maclean's Magazine 50 Most Important People in Canada (2014){{Cite web |last=Maclean's |date=2014-11-22 |title=The Maclean's Power List: The 50 most important people in Canada |url=https://macleans.ca/news/canada/the-macleans-power-list-the-50-most-important-people-in-canada/ |access-date=2023-12-27 |website=Macleans.ca |language=en-US}}
- Killam Prize in Health Sciences (2019){{Cite web |title=U of T researchers awarded Killam Prizes for contributions to humanities, health sciences {{!}} University of Toronto |url=https://www.utoronto.ca/news/u-t-researchers-awarded-killam-prizes-contributions-humanities-health-sciences |access-date=2023-12-27 |website=www.utoronto.ca |language=en}}
- Distinguished Fellow of the International Society for Autism Research (2021){{Cite web |title=INSAR Fellows - International Society for Autism Research (INSAR) |url=https://www.autism-insar.org/page/Fellows?&hhsearchterms=%22stephen+and+scherer%22 |access-date=2023-12-27 |website=www.autism-insar.org}}
- Debrecen Award for Molecular Medicine (2024){{Cite AV media |url=https://www.youtube.com/watch?v=mnLQsxv1atg |title=Kanadai molekuláris biológus kapta idén a Debrecen Díjat |date=2024-12-03 |last=Debreceni Egyetem |access-date=2024-12-11 |via=YouTube}}
Scherer holds the Northbridge Chair in Paediatric Research at SickKids and the University of Toronto,{{Cite web |title=Scientific & Academic Chairs |url=https://www.sickkids.ca/en/research/scientific-academic-chairs/ |access-date=2023-12-27 |website=SickKids |language=en}} and previously held GlaxoSmithKline-CIHR Endowed Chair in Genetics and Genomics from SickKids and the University of Toronto.{{Cite web |last=Government of Canada |first=Canadian Institutes of Health Research |date=2015-11-30 |title=Just an Ordinary Superstar - CIHR |url=https://cihr-irsc.gc.ca/e/49529.html |access-date=2023-12-27 |website=cihr-irsc.gc.ca}} He also holds three Honorary Doctorates from the University of Waterloo (2017), Western University (2018) and the University of Windsor (2001).{{Cite web |title=University of Windsor Honorary Degrees Conferred |url=https://www.uwindsor.ca/secretariat/sites/uwindsor.ca.secretariat/files/honorary_degree_by_convocation_august_8_2022.pdf |website=University of Windsor}}{{Cite web |title=Alumni Profile: Stephen W. Scherer {{!}} Science |url=https://uwaterloo.ca/science/alumni-and-friends/alumni-profile-stephen-w-scherer |access-date=2023-12-27 |website=uwaterloo.ca |language=en}}{{Cite web |last=University |first=Department of Communications and Public Affairs, Western |date=2018-04-10 |title=Western to honour global science, business, entertainment and sport leaders at 311th Convocation |url=https://mediarelations.uwo.ca/2018/04/10/western-honour-global-science-business-entertainment-sport-leaders-311th-convocation/ |access-date=2023-12-27 |website=Media Relations |language=en-US}}{{Citation |title=Western Convocation - June 14, 2018 - Stephen Scherer | date=June 18, 2018 |url=https://www.youtube.com/watch?v=JfQxPAbsniI |access-date=2023-12-27 |language=en}}
References
{{reflist|2}}
{{Authority control}}
{{DEFAULTSORT:Scherer, Stephen W.}}
Category:Fellows of the American Association for the Advancement of Science
Category:Fellows of the Royal Society of Canada
Category:People from Windsor, Ontario
Category:Scientists from Ontario
Category:University of Toronto alumni
Category:Academic staff of the University of Toronto
Category:University of Waterloo alumni