Steric 5-cubes
{{Use Oxford spelling|date=May 2022}}
{{Use dmy dates|date=May 2022|cs1-dates=y}}
class=wikitable align=right width=480 style="margin-left:1em;" |
align=center valign=top
|{{ubl|160px|5-cube|{{CDD|node_1|4|node|3|node|3|node|3|node}}}} |{{ubl|160px|{{small|Steric 5-cube}}|{{CDD|nodes_10ru|split2|node|3|node|3|node_1}}|{{CDD|node_h1|4|node|3|node|3|node|3|node_1}}}} |{{ubl|160px|{{small|Stericantic 5-cube}}|{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}}|{{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}}} |
align=center valign=top
|{{ubl|160px|{{small|Half 5-cube}}|{{CDD|nodes_10ru|split2|node|3|node|3|node}}|{{CDD|node_h1|4|node|3|node|3|node|3|node}}}} |{{ubl|160px|{{small|Steriruncic 5-cube}}|{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}}|{{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}}} |{{ubl|160px|{{small|Steriruncicantic 5-cube}}|{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}}|{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}}} |
colspan=3|Orthogonal projections in B{{sub|5}} Coxeter plane |
---|
In five-dimensional geometry, a steric 5-cube or (steric 5-demicube or sterihalf 5-cube) is a convex uniform 5-polytope. There are unique 4 steric forms of the 5-cube. Steric 5-cubes have half the vertices of stericated 5-cubes.
{{TOC left}}
{{-}}
Steric 5-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steric 5-cube | |
bgcolor=#e7dcc3|Type | uniform polyteron |
bgcolor=#e7dcc3|Schläfli symbol | {{ubl|t{{sub|0,3}}{3,3{{sup|2,1}}}|h{{sub|4}}{4,3,3,3}}} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{ubl|{{CDD|nodes_10ru|split2|node|3|node|3|node_1}}|{{CDD|node_h1|4|node|3|node|3|node|3|node_1}}}} |
bgcolor=#e7dcc3|4-faces | 82 |
bgcolor=#e7dcc3|Cells | 480 |
bgcolor=#e7dcc3|Faces | 720 |
bgcolor=#e7dcc3|Edges | 400 |
bgcolor=#e7dcc3|Vertices | 80 |
bgcolor=#e7dcc3|Vertex figure | {3,3}-t{{sub|1}}{3,3} antiprism |
bgcolor=#e7dcc3|Coxeter groups | D{{sub|5}}, [3{{sup|2,1,1}}] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Steric penteract, runcinated demipenteract
- Small prismated hemipenteract (siphin) (Jonathan Bowers){{refn|name="Klitzing"|{{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}}}}{{rp|(x3o3o *b3o3x - siphin)}}
= Cartesian coordinates =
The Cartesian coordinates for the 80 vertices of a steric 5-cube centered at the origin are the permutations of
: (±1,±1,±1,±1,±3)
with an odd number of plus signs.
=Images=
{{5-demicube Coxeter plane graphs|t03|200}}
= Related polytopes=
{{Steric cube table}}
Stericantic 5-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Stericantic 5-cube | |
bgcolor=#e7dcc3|Type | uniform polyteron |
bgcolor=#e7dcc3|Schläfli symbol | {{ubl|t{{sub|0,1,3}}{3,3{{sup|2,1}}}|h{{sub|2,4}}{4,3,3,3}}} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{ubl|{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}}|{{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}}} |
bgcolor=#e7dcc3|4-faces | 82 |
bgcolor=#e7dcc3|Cells | 720 |
bgcolor=#e7dcc3|Faces | 1840 |
bgcolor=#e7dcc3|Edges | 1680 |
bgcolor=#e7dcc3|Vertices | 480 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D{{sub|5}}, [3{{sup|2,1,1}}] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Prismatotruncated hemipenteract (pithin) (Jonathan Bowers){{r|Klitzing|p=(x3x3o *b3o3x - pithin)}}
= Cartesian coordinates =
The Cartesian coordinates for the 480 vertices of a stericantic 5-cube centered at the origin are coordinate permutations:
: (±1,±1,±3,±3,±5)
with an odd number of plus signs.
=Images=
{{5-demicube Coxeter plane graphs|t013|200}}
Steriruncic 5-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steriruncic 5-cube | |
bgcolor=#e7dcc3|Type | uniform polyteron |
bgcolor=#e7dcc3|Schläfli symbol | {{ubl|t{{sub|0,2,3}}{3,3{{sup|2,1}}}|h{{sub|3,4}}{4,3,3,3}}} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{ubl|{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}}|{{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}}} |
bgcolor=#e7dcc3|4-faces | 82 |
bgcolor=#e7dcc3|Cells | 560 |
bgcolor=#e7dcc3|Faces | 1280 |
bgcolor=#e7dcc3|Edges | 1120 |
bgcolor=#e7dcc3|Vertices | 320 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D{{sub|5}}, [3{{sup|2,1,1}}] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Prismatorhombated hemipenteract (pirhin) (Jonathan Bowers){{r|Klitzing|p=(x3o3o *b3x3x - pirhin)}}
= Cartesian coordinates =
The Cartesian coordinates for the 320 vertices of a steriruncic 5-cube centered at the origin are coordinate permutations:
: (±1,±1,±1,±3,±5)
with an odd number of plus signs.
=Images=
{{5-demicube Coxeter plane graphs|t023|200}}
Steriruncicantic 5-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Steriruncicantic 5-cube | |
bgcolor=#e7dcc3|Type | uniform polyteron |
bgcolor=#e7dcc3|Schläfli symbol | {{ubl|t{{sub|0,1,2,3}}{3,3{{sup|2,1}}}|h{{sub|2,3,4}}{4,3,3,3}}} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{ubl|{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}}|{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}}} |
bgcolor=#e7dcc3|4-faces | 82 |
bgcolor=#e7dcc3|Cells | 720 |
bgcolor=#e7dcc3|Faces | 2080 |
bgcolor=#e7dcc3|Edges | 2400 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D{{sub|5}}, [3{{sup|2,1,1}}] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great prismated hemipenteract (giphin) (Jonathan Bowers){{r|Klitzing|p=(x3x3o *b3x3x - giphin)}}
= Cartesian coordinates =
The Cartesian coordinates for the 960 vertices of a steriruncicantic 5-cube centered at the origin are coordinate permutations:
: (±1,±1,±3,±5,±7)
with an odd number of plus signs.
=Images=
{{5-demicube Coxeter plane graphs|t0123|200}}
Related polytopes
This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.
There are 23 uniform polytera (uniform 5-polytope) that can be constructed from the D{{sub|5}} symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.
{{Demipenteract family}}
References
{{reflist}}
Further reading
{{refbegin}}
- {{Cite book |last=Coxeter |first=H. S. M. |url={{GBurl|id=iWvXsVInpgMC}} |title=Regular Polytopes |date=1973 |publisher=Dover |edition=3rd |location=New York City |author-link=Harold Scott MacDonald Coxeter |access-date=2022-05-19}}
- {{Cite book |last=Coxeter |first=H. S. M. |url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |title=Kaleidoscopes: Selected Writings of H.S.M. Coxeter |date=1995-05-17 |publisher=John Wiley & Sons |isbn=978-0-471-01003-6 |editor-last1=Sherk |editor-first1=F. Arthur |series=Canadian Mathematical Society Series of Monographs and Advanced Texts |language=en-CA |lccn=94047368 |oclc=632987525 |ol=7598569M |author-link=Harold Scott MacDonald Coxeter |access-date=2022-05-19 |editor-last2=McMullen |editor-first2=Peter |editor-last3=Thompson |editor-first3=Anthony C. |editor-last4=Weiss |editor-first4=Asia Ivić}}
- {{Cite journal |last=Coxeter |first=H. S. M. |author-link=Harold Scott MacDonald Coxeter |date=1940-12-01 |title=Regular and Semi Regular Polytopes I |url=https://link.springer.com/article/10.1007/BF01181449 |journal=Mathematische Zeitschrift |language=en-CA |publisher=Springer Nature |volume=46 |pages=380–407 |doi=10.1007/BF01181449 |s2cid=186237114 |issn=1432-1823 |url-access=subscription |access-date=2022-05-19}}
- {{Cite journal |last=Coxeter |first=H. S. M. |author-link=Harold Scott MacDonald Coxeter |date=1985-12-01 |title=Regular and Semi-Regular Polytopes II |url=https://link.springer.com/article/10.1007/BF01161657 |journal=Mathematische Zeitschrift |language=en-CA |publisher=Springer Nature |volume=188 |issue=4 |pages=559–591 |doi=10.1007/BF01161657 |s2cid=120429557 |issn=1432-1823 |url-access=subscription |access-date=2022-05-19}}
- {{Cite journal |last=Coxeter |first=H. S. M. |author-link=Harold Scott MacDonald Coxeter |date=1988-03-01 |title=Regular and Semi-Regular Polytopes III |url=https://link.springer.com/article/10.1007/BF01161745 |journal=Mathematische Zeitschrift |language=en-CA |publisher=Springer Nature |volume=200 |issue=1 |pages=3–45 |doi=10.1007/BF01161745 |s2cid=186237142 |issn=1432-1823 |url-access=subscription |access-date=2022-05-19}}
- {{Cite thesis |last=Johnson |first=Norman W. |title=Uniform Polytopes |date=1991 |degree=Unfinished manuscript |language=en-CA |author-link=Norman Johnson (mathematician)}}
- {{Cite thesis |last=Johnson |first=Norman W. |title=The Theory of Uniform Polytopes and Honeycombs |date=1966 |degree=PhD |publisher=University of Toronto |url={{GBurl|id=PzOFswEACAAJ}} |language=en-CA |author-link=Norman Johnson (mathematician) |access-date=2022-05-19}}
{{refend}}
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}