Stericated 7-simplexes

class=wikitable style="float:right; margin-left:8px; width:480px"
align=center

|160px
7-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}

|160px
Stericated 7-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node}}

|160px
Bistericated 7-simplex
{{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}}

align=center

|160px
Steritruncated 7-simplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}

|160px
Bisteritruncated 7-simplex
{{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node}}

|160px
Stericantellated 7-simplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node}}

align=center

|160px
Bistericantellated 7-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node}}

|160px
Stericantitruncated 7-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}

|160px
Bistericantitruncated 7-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}}

align=center

|160px
Steriruncinated 7-simplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node}}

|160px
Steriruncitruncated 7-simplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}

|160px
Steriruncicantellated 7-simplex
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}

align=center

|160px
Bisteriruncitruncated 7-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}

|160px
Steriruncicantitruncated 7-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}

|160px
Bisteriruncicantitruncated 7-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}

In seven-dimensional geometry, a stericated 7-simplex is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-simplex.

There are 14 unique sterication for the 7-simplex with permutations of truncations, cantellations, and runcinations.

Stericated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|Stericated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges2240
style="background:#e7dcc3;"|Vertices280
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Small cellated octaexon (acronym: sco) (Jonathan Bowers)Klitizing, (x3o3o3o3x3o3o - sco)

= Coordinates =

The vertices of the stericated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,1,2). This construction is based on facets of the stericated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t04|150}}

Bistericated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|bistericated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,5{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges3360
style="background:#e7dcc3;"|Vertices420
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7×2, 36, order 80320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Small bicellated hexadecaexon (acronym: sabach) (Jonathan Bowers)Klitizing, (o3x3o3o3o3x3o - sabach)

= Coordinates =

The vertices of the bistericated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,1,2,2). This construction is based on facets of the bistericated 8-orthoplex.

= Images =

{{7-simplex2 Coxeter plane graphs|t15|150}}

Steritruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|steritruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges7280
style="background:#e7dcc3;"|Vertices1120
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Cellitruncated octaexon (acronym: cato) (Jonathan Bowers)Klitizing, (x3x3o3o3x3o3o - cato)

= Coordinates =

The vertices of the steritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,2,3). This construction is based on facets of the steritruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t014|150}}

Bisteritruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|bisteritruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,2,5{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges9240
style="background:#e7dcc3;"|Vertices1680
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Bicellitruncated octaexon (acronym: bacto) (Jonathan Bowers)Klitizing, (o3x3x3o3o3x3o - bacto)

= Coordinates =

The vertices of the bisteritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,2,3,3). This construction is based on facets of the bisteritruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t125|150}}

Stericantellated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|Stericantellated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges10080
style="background:#e7dcc3;"|Vertices1680
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Cellirhombated octaexon (acronym: caro) (Jonathan Bowers)Klitizing, (x3o3x3o3x3o3o - caro)

= Coordinates =

The vertices of the stericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,3). This construction is based on facets of the stericantellated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t024|150}}

Bistericantellated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|Bistericantellated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,3,5{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges15120
style="background:#e7dcc3;"|Vertices2520
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7×2, 36, order 80320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Bicellirhombihexadecaexon (acronym: bacroh) (Jonathan Bowers)Klitizing, (o3x3o3x3o3x3o - bacroh)

= Coordinates =

The vertices of the bistericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,2,3,3). This construction is based on facets of the stericantellated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t135|150}}

Stericantitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|stericantitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges16800
style="background:#e7dcc3;"|Vertices3360
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Celligreatorhombated octaexon (acronym: cagro) (Jonathan Bowers)Klitizing, (x3x3x3o3x3o3o - cagro)

= Coordinates =

The vertices of the stericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,3,4). This construction is based on facets of the stericantitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t0124|150}}

Bistericantitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|bistericantitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,2,3,5{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges22680
style="background:#e7dcc3;"|Vertices5040
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Bicelligreatorhombated octaexon (acronym: bacogro) (Jonathan Bowers)Klitizing, (o3x3x3x3o3x3o - bacogro)

= Coordinates =

The vertices of the bistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,3,4,4). This construction is based on facets of the bistericantitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t1235|150}}

Steriruncinated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|Steriruncinated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,3,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges5040
style="background:#e7dcc3;"|Vertices1120
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Celliprismated octaexon (acronym: cepo) (Jonathan Bowers)Klitizing, (x3o3o3x3x3o3o - cepo)

= Coordinates =

The vertices of the steriruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,2,3). This construction is based on facets of the steriruncinated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t034|150}}

Steriruncitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|steriruncitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,3,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges13440
style="background:#e7dcc3;"|Vertices3360
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Celliprismatotruncated octaexon (acronym: capto) (Jonathan Bowers)Klitizing, (x3x3x3o3x3o3o - capto)

= Coordinates =

The vertices of the steriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,3,4). This construction is based on facets of the steriruncitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t0134|150}}

Steriruncicantellated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|steriruncicantellated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,3,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges13440
style="background:#e7dcc3;"|Vertices3360
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Celliprismatorhombated octaexon (acronym: capro) (Jonathan Bowers)Klitizing, (x3o3x3x3x3o3o - capro)

= Coordinates =

The vertices of the steriruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,3,4). This construction is based on facets of the steriruncicantellated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t0234|150}}

Bisteriruncitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|bisteriruncitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,2,4,5{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges20160
style="background:#e7dcc3;"|Vertices5040
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7×2, 36, order 80320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Bicelliprismatotruncated hexadecaexon (acronym: bicpath) (Jonathan Bowers)Klitizing, (o3x3x3o3x3x3o - bicpath)

= Coordinates =

The vertices of the bisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,2,3,4,4). This construction is based on facets of the bisteriruncitruncated 8-orthoplex.

= Images =

{{7-simplex2 Coxeter plane graphs|t1245|150}}

Steriruncicantitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|steriruncicantitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,3,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges23520
style="background:#e7dcc3;"|Vertices6720
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Great cellated octaexon (acronym: gecco) (Jonathan Bowers)Klitizing, (x3x3x3x3x3o3o - gecco)

= Coordinates =

The vertices of the steriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,5). This construction is based on facets of the steriruncicantitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t01234|150}}

Bisteriruncicantitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="320"

! style="background:#e7dcc3;" colspan="2"|bisteriruncicantitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,2,3,4,5{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges35280
style="background:#e7dcc3;"|Vertices10080
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7×2, 36, order 80320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names=

  • Great bicellated hexadecaexon (gabach) (Jonathan Bowers) Klitizing, (o3x3x3x3x3x3o - gabach)

= Coordinates =

The vertices of the bisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,3,4,5,5). This construction is based on facets of the bisteriruncicantitruncated 8-orthoplex.

= Images =

{{7-simplex2 Coxeter plane graphs|t12345|150}}

Related polytopes

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.

{{Octaexon family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} x3o3o3o3x3o3o - sco, o3x3o3o3o3x3o - sabach, x3x3o3o3x3o3o - cato, o3x3x3o3o3x3o - bacto, x3o3x3o3x3o3o - caro, o3x3o3x3o3x3o - bacroh, x3x3x3o3x3o3o - cagro, o3x3x3x3o3x3o - bacogro, x3o3o3x3x3o3o - cepo, x3x3x3o3x3o3o - capto, x3o3x3x3x3o3o - capro, o3x3x3o3x3x3o - bicpath, x3x3x3x3x3o3o - gecco, o3x3x3x3x3x3o - gabach