Substitution failure is not an error
{{Short description|C++ programming technique}}
{{Use dmy dates|date=December 2023}}
Substitution failure is not an error (SFINAE) is a principle in C++ where an invalid substitution of template parameters is not in itself an error. David Vandevoorde first introduced the acronym SFINAE to describe related programming techniques.{{cite book | last=Vandevoorde | first=David |author2=Nicolai M. Josuttis | title=C++ Templates: The Complete Guide | publisher=Addison-Wesley Professional | year=2002 | isbn=0-201-73484-2}}
Specifically, when creating a candidate set for overload resolution, some (or all) candidates of that set may be the result of instantiated templates with (potentially deduced) template arguments substituted for the corresponding template parameters. If an error occurs during the substitution of a set of arguments for any given template, the compiler removes the potential overload from the candidate set instead of stopping with a compilation error, provided that the C++ standard permits discarding such a substitution error as mentioned.International Organization for Standardization. "ISO/IEC 14882:2003, Programming languages – C++", § 14.8.2. If one or more candidates remain and overload resolution succeeds, the invocation is well-formed.
Example
The following example illustrates a basic instance of SFINAE:
struct Test {
typedef int foo;
};
template
void f(typename T::foo) {} // Definition #1
template
void f(T) {} // Definition #2
int main() {
f
f
// thanks to SFINAE.
return 0;
}
Here, attempting to use a non-class type in a qualified name (T::foo
) results in a deduction failure for f
because int
has no nested type named foo
, but the program is well-formed because a valid function remains in the set of candidate functions.
Although SFINAE was initially introduced to avoid creating ill-formed programs when unrelated template declarations were visible (e.g., through the inclusion of a header file), many developers later found the behavior useful for compile-time introspection. Specifically, it allows a template to determine certain properties of its template arguments at instantiation time.
For example, SFINAE can be used to determine if a type contains a certain typedef:
- include
template
struct has_typedef_foobar {
// Types "yes" and "no" are guaranteed to have different sizes,
// specifically sizeof(yes) == 1 and sizeof(no) == 2.
typedef char yes[1];
typedef char no[2];
template
static yes& test(typename C::foobar*);
template
static no& test(...);
// If the "sizeof" of the result of calling test
// sizeof(yes), the first overload worked and T has a nested type named
// foobar.
static const bool value = sizeof(test
};
struct foo {
typedef float foobar;
};
int main() {
std::cout << std::boolalpha;
std::cout << has_typedef_foobar
std::cout << has_typedef_foobar
return 0;
}
When T
has the nested type foobar
defined, the instantiation of the first test
works and the null pointer constant is successfully passed. (And the resulting type of the expression is yes
.) If it does not work, the only available function is the second test
, and the resulting type of the expression is no
. An ellipsis is used not only because it will accept any argument, but also because its conversion rank is lowest, so a call to the first function will be preferred if it is possible; this removes ambiguity.
C++11 simplification
In C++11, the above code could be simplified to:
- include
- include
template
using void_t = void;
template
struct has_typedef_foobar : std::false_type {};
template
struct has_typedef_foobar
struct foo {
using foobar = float;
};
int main() {
std::cout << std::boolalpha;
std::cout << has_typedef_foobar
std::cout << has_typedef_foobar
return 0;
}
With the standardisation of the detection idiom in the [http://en.cppreference.com/w/cpp/experimental/lib_extensions_2 Library fundamental v2 (n4562)] proposal, the above code could be re-written as follows:
- include
- include
template
using has_typedef_foobar_t = typename T::foobar;
struct foo {
using foobar = float;
};
int main() {
std::cout << std::boolalpha;
std::cout << std::is_detected
std::cout << std::is_detected
return 0;
}
The developers of Boost used SFINAE in boost::enable_if[http://www.boost.org/doc/libs/release/libs/utility/enable_if.html Boost Enable If] and in other ways.