Sulfur compounds
{{Short description|Chemical compounds with a sulfur atom}}
Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.
Electron transfer reactions
Image:Lapis lazuli block.jpg owes its blue color to a trisulfur radical anion ({{chem|S|3|-}})]]
Sulfur polycations, S82+, S42+ and S162+ are produced when sulfur is reacted with oxidising agents in a strongly acidic solution.Shriver, Atkins. Inorganic Chemistry, Fifth Edition. W. H. Freeman and Company, New York, 2010; pp 416 The colored solutions produced by dissolving sulfur in oleum were first reported as early as 1804 by C.F. Bucholz, but the cause of the color and the structure of the polycations involved was only determined in the late 1960s. S82+ is deep blue, S42+ is yellow and S162+ is red.{{Greenwood&Earnshaw2nd|pages= 645–665}}
Reduction of sulfur gives various polysulfides with the formula Sx2-, many of which have been obtained in crystalline form. Illustrative is the production of sodium tetrasulfide:
:{{chem2|4 Na + S8 -> 2 Na2S4}}
Some of these dianions dissociate to give radical anions, such as S3− gives the blue color of the rock lapis lazuli.
File:S@CNT.jpg (CNT, a). Zig-zag (b) and straight (c) S chains inside double-wall CNTs{{cite journal|doi=10.1038/ncomms3162|pmid=23851903|pmc=3717502|title=Conducting linear chains of sulphur inside carbon nanotubes|journal=Nature Communications|volume=4|pages=2162|year=2013|last1=Fujimori|first1=Toshihiko|last2=Morelos-Gómez|first2=Aarón|last3=Zhu|first3=Zhen|last4=Muramatsu|first4=Hiroyuki|last5=Futamura|first5=Ryusuke|last6=Urita|first6=Koki|last7=Terrones|first7=Mauricio|last8=Hayashi|first8=Takuya|last9=Endo|first9=Morinobu|last10=Young Hong|first10=Sang|last11=Chul Choi|first11=Young|last12=Tománek|first12=David|last13=Kaneko|first13=Katsumi|bibcode=2013NatCo...4.2162F}}]]
This reaction highlights a distinctive property of sulfur: its ability to catenate (bind to itself by formation of chains). Protonation of these polysulfide anions produces the polysulfanes, H2Sx where x= 2, 3, and 4.Handbook of Preparative Inorganic Chemistry, 2nd ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 421. Ultimately, reduction of sulfur produces sulfide salts:
:16 Na + S8 → 8 Na2S
The interconversion of these species is exploited in the sodium–sulfur battery.
Hydrogen sulfide
{{Main article|Hydrogen sulfide}}
Treatment of sulfur with hydrogen gives hydrogen sulfide. When dissolved in water, hydrogen sulfide is mildly acidic:Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.), Oxford:Butterworth-Heinemann. {{ISBN|0-7506-3365-4}}.
:H2S {{eqm}} HS− + H+
Hydrogen sulfide gas and the hydrosulfide anion are extremely toxic to mammals, due to their inhibition of the oxygen-carrying capacity of hemoglobin and certain cytochromes in a manner analogous to cyanide and azide.
Oxides
The two principal sulfur oxides are obtained by burning sulfur:
:S + O2 → SO2 (sulfur dioxide)
:2 SO2 + O2 → 2 SO3 (sulfur trioxide)
Many other sulfur oxides are observed including the sulfur-rich oxides include sulfur monoxide, disulfur monoxide, disulfur dioxides, and higher oxides containing peroxo groups.
Halides
Sulfur reacts with fluorine to give the highly reactive sulfur tetrafluoride and the highly inert Sulfur hexafluoride.{{OrgSynth|last=Hasek|first=W. R.|title=1,1,1-Trifluoroheptane|volume=41|page=104|year=1961|doi=10.1002/0471264180.os041.28}} Whereas fluorine gives S(IV) and S(VI) compounds, chlorine gives S(II) and S(I) derivatives. Thus, sulfur dichloride, disulfur dichloride, and higher chlorosulfanes arise from the chlorination of sulfur. Sulfuryl chloride and chlorosulfuric acid are derivatives of sulfuric acid; thionyl chloride (SOCl2) is a common reagent in organic synthesis.{{OrgSynth|last1=Rutenberg|first1=M. W.|last2=Horning|first2=E. C.|title= 1-Methyl-3-ethyloxindole|volume=30|page=62|year=1950|doi=10.15227/orgsyn.030.0062}} Sulfur halides are precursors to a variety of metal complexes.{{Cite journal |last1=Dirican |first1=Dilcan |last2=Pfister |first2=Nils |last3=Wozniak |first3=Martin |last4=Braun |first4=Thomas |date=2020-06-02 |title=Reactivity of Binary and Ternary Sulfur Halides towards Transition-Metal Compounds |journal=Chemistry – A European Journal |language=en |volume=26 |issue=31 |pages=6945–6963 |doi=10.1002/chem.201904493 |issn=0947-6539 |pmc=7318666 |pmid=31840851}}
= Pseudohalides =
Sulfur oxidizes cyanide and sulfite to give thiocyanate and thiosulfate, respectively.
Metal sulfides
Sulfur reacts with many metals. Electropositive metals give polysulfide salts. Copper, zinc and silver are tarnished by sulfur. Although many metal sulfides are known, most are prepared by high temperature reactions of the elements.{{Cite book |last1=Vaughan |first1=David J. |title=Mineral chemistry of metal sulfides |last2=Craig |first2=James R. |date=1978 |publisher=Cambridge university press |isbn=978-0-521-21489-6 |series=Cambridge earth science series |location=Cambridge London New york [etc.]}} Sulfide minerals contain the sulfide (S2-) or disulfide (S22-) anions. Typical examples are:
- Acanthite {{chem2|Ag2S}}
- Chalcocite {{chem2|Cu2S}}
- Galena {{chem2|PbS}}
- Sphalerite {{chem2|ZnS}}
- Chalcopyrite {{chem2|CuFeS2}}
- Millerite {{chem2|NiS}}
- Cinnabar {{chem2|HgS}}
- Stibnite {{chem2|Sb2S3}}
- Pyrite {{chem2|FeS2}}
- Molybdenite {{chem2|MoS2}}
Organic compounds
{{Main|Organosulfur compounds}}
File:Allicin skeletal.svg|Allicin, a chemical compound in garlic
File:L-Cystein - L-Cysteine.svg |(R)-cysteine, an amino acid containing a thiol group
File:Methionin - Methionine.svg|Methionine, an amino acid containing a thioether
File:Diphenyl disulfide.svg|Diphenyl disulfide, a representative disulfide
File:Perfluorooctanesulfonic acid structure.svg|Perfluorooctanesulfonic acid, a surfactant
File:Dibenzothiophen - Dibenzothiophene.svg|Dibenzothiophene, a component of crude oil
File:Penicillin core.svg|Penicillin, an antibiotic where "R" is the variable group
Some of the main classes of sulfur-containing organic compounds include the following:{{cite book | author = Cremlyn R. J. | title = An Introduction to Organosulfur Chemistry | publisher = John Wiley and Sons | location = Chichester | date = 1996 | isbn = 0-471-95512-4 }}
- Thiols or mercaptans (so called because they capture mercury as chelators) are the sulfur analogs of alcohols; treatment of thiols with base gives thiolate ions.
- Thioethers are the sulfur analogs of ethers.
- Sulfonium ions have three groups attached to a cationic sulfur center. Dimethylsulfoniopropionate (DMSP) is one such compound, important in the marine organic sulfur cycle.
- Sulfoxides and sulfones are thioethers with one and two oxygen atoms attached to the sulfur atom, respectively. The simplest sulfoxide, dimethyl sulfoxide, is a common solvent; a common sulfone is sulfolane.
- Sulfonic acids are used in many detergents.
Compounds with carbon–sulfur multiple bonds are uncommon, an exception being carbon disulfide, a volatile colorless liquid that is structurally similar to carbon dioxide. It is used as a reagent to make the polymer rayon and many organosulfur compounds. Unlike carbon monoxide, carbon monosulfide is stable only as an extremely dilute gas, found between solar systems.{{cite journal|last1=Wilson|first1=R. W.|last2=Penzias|first2=A. A.|last3=Wannier|first3=P. G.|last4=Linke|first4=R. A.|author-link=Robert Woodrow Wilson|author-link2=Arno Allan Penzias|title=Isotopic abundances in interstellar carbon monosulfide|journal=Astrophysical Journal|date=15 March 1976|volume=204|pages=L135–L137|doi=10.1086/182072|bibcode=1976ApJ...204L.135W|doi-access=free}}
Organosulfur compounds are responsible for some of the unpleasant odors of decaying organic matter. They are widely known as the odorant in domestic natural gas, garlic odor, and skunk spray. Not all organic sulfur compounds smell unpleasant at all concentrations: the sulfur-containing monoterpenoid (grapefruit mercaptan) in small concentrations is the characteristic scent of grapefruit, but has a generic thiol odor at larger concentrations. Sulfur mustard, a potent vesicant, was used in World War I as a disabling agent.{{cite book|last=Banoub|first=Joseph|title=Detection of Biological Agents for the Prevention of Bioterrorism|date=2011|isbn=978-90-481-9815-3|oclc=697506461|page=183|bibcode=2011dbap.book.....B|doi=10.1007/978-90-481-9815-3|series=NATO Science for Peace and Security Series A: Chemistry and Biology}}
Sulfur–sulfur bonds are a structural component used to stiffen rubber, similar to the disulfide bridges that rigidify proteins (see biological below). In the most common type of industrial "curing" or hardening and strengthening of natural rubber, elemental sulfur is heated with the rubber to the point that chemical reactions form disulfide bridges between isoprene units of the polymer. This process, patented in 1843, made rubber a major industrial product, especially in automobile tires. Because of the heat and sulfur, the process was named vulcanization, after the Roman god of the forge and volcanism.
See also
References
{{Reflist}}
{{Sulfur compounds}}
{{Authority control}}