Sycamore processor

{{Short description|2019 quantum processor by Google}}

{{Use dmy dates|date=December 2022}}

File:Google Sycamore Chip 002.png

Sycamore is a transmon superconducting quantum processor created by Google's Artificial Intelligence division.{{Cite web |url=https://www.pcmag.com/news/371499/google-claims-quantum-computing-achievement-ibm-says-not-so |title=Google Claims Quantum Computing Achievement, IBM Says Not So Fast |first1=Michael |last1=Kan |date=23 October 2019 |website=PCMAG}} It has 53 qubits.{{cite web |last=Cho |first=Adrian |date=2 August 2022 |title=Ordinary computers can beat Google's quantum computer after all |url=https://www.science.org/content/article/ordinary-computers-can-beat-google-s-quantum-computer-after-all |website=Science}}

In 2019, Sycamore completed a task in 200 seconds that Google claimed, in a Nature paper, would take a state-of-the-art supercomputer 10,000 years to finish. Thus, Google claimed to have achieved quantum supremacy. To estimate the time that would be taken by a classical supercomputer, Google ran portions of the quantum circuit simulation on Summit, one of the most powerful classical computers in the world.{{cite web |url=https://www.olcf.ornl.gov/summit/ |title=Summit |access-date=2 April 2024}}{{cite web |url=https://www.datacenterdynamics.com/en/news/frontier-holds-onto-number-one-spot-on-top500-list/ |title=Frontier remains world's most powerful supercomputer on Top500 list |date=14 November 2023 |access-date=2 April 2024}}{{Cite journal |last1=Arute |first1=Frank |last2=Arya |first2=Kunal |last3=Babbush |first3=Ryan |last4=Bacon |first4=Dave |last5=Bardin |first5=Joseph C. |last6=Barends |first6=Rami |last7=Biswas |first7=Rupak |last8=Boixo |first8=Sergio |last9=Brandao |first9=Fernando G. S. L.|last10=Buell|first10=David A. |last11=Burkett |first11=Brian |date=October 2019 |title=Quantum supremacy using a programmable superconducting processor |journal=Nature |volume=574 |issue=7779 |pages=505–510 |doi=10.1038/s41586-019-1666-5 |pmid=31645734 |arxiv=1910.11333 |bibcode=2019Natur.574..505A |issn=1476-4687 |doi-access=free}}{{cite web |url=https://www.bbc.co.uk/news/science-environment-50154993 |title=Google claims 'quantum supremacy' for computer |date=23 October 2019 |work=BBC News |first=Paul |last=Rincon |access-date=23 October 2019}}{{cite journal |title=Hello quantum world! Google publishes landmark quantum supremacy claim |date=23 October 2019 |first=Elizabeth |last=Gibney |journal=Nature |volume=574 |issue=7779 |pages=461–462 |doi=10.1038/d41586-019-03213-z |pmid=31645740 |bibcode=2019Natur.574..461G |s2cid=204836839 |doi-access=free}}{{Cite news |url=https://www.nytimes.com/aponline/2019/10/23/us/bc-us-google-quantum-computing.html |title=Google Claims Breakthrough in Blazingly Fast Computing |date=23 October 2019 |work=Associated Press via The New York Times |access-date=3 November 2019 |language=en-US |archive-url=https://web.archive.org/web/20191103175058/https://www.nytimes.com/aponline/2019/10/23/us/bc-us-google-quantum-computing.html |archive-date=3 November 2019}} Later, IBM made a counter-argument, claiming that the task would take only 2.5 days on a classical system like Summit.{{Cite web |url=https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/ |title=On "Quantum Supremacy" |date=22 October 2019 |website=IBM Research Blog |access-date=28 October 2019 |archive-url=https://web.archive.org/web/20191101012410/https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/ |archive-date=1 November 2019 |url-status=dead}}{{Cite journal |title=What next for quantum computers? |first=Chelsea |last=Whyte |date=5 October 2019 |journal=New Scientist |volume=243 |issue=3250 |pages=15 |doi=10.1016/S0262-4079(19)31852-4 |s2cid=209993144}} If Google's claims are upheld, then it would represent a huge leap in computing power.{{Cite web |url=https://www.cnet.com/news/google-quantum-supremacy-only-first-taste-of-computing-revolution/ |title=Quantum supremacy? Done. Now the hard work begins for mere quantum practicality |first=Stephen |last=Shankland |work=CNET |date=25 October 2019}}{{Cite web |url=https://www.scientificamerican.com/article/hands-on-with-googles-quantum-computer/ |title=Hands-On with Google's Quantum Computer |first=Neil |last=Savage |website=Scientific American |date=24 October 2019}}{{Cite web |url=https://www.inc.com/eric-mack/no-google-its-quantum-computer-arent-killing-bitcoin-anytime-soon.html |title=No, Google and Its Quantum Computer Aren't Killing Bitcoin Anytime Soon |first=Eric |last=Mack |date=24 October 2019 |website=Inc.com}}

In August 2020, quantum engineers working for Google reported the largest chemical simulation on a quantum computer – a Hartree–Fock approximation with Sycamore paired with a classical computer that analyzed results to provide new parameters for the 12-qubit system.{{cite news |title=Google conducts largest chemical simulation on a quantum computer to date |url=https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html |work=Phys.org |date=28 August 2020 |first=Bob |last=Yirka |access-date=7 September 2020 |language=en}}{{cite news |last1=Savage |first1=Neil |title=Google's Quantum Computer Achieves Chemistry Milestone |url=https://www.scientificamerican.com/article/googles-quantum-computer-achieves-chemistry-milestone/ |work=Scientific American |date=24 October 2019 |access-date=7 September 2020 |language=en}}{{cite journal |title=Hartree–Fock on a superconducting qubit quantum computer |journal=Science |date=28 August 2020 |volume=369 |issue=6507 |pages=1084–1089 |doi=10.1126/science.abb9811 |pmid=32855334 |url=https://www.science.org/doi/10.1126/science.abb9811 |access-date=7 September 2020 |language=en |issn=0036-8075 |arxiv=2004.04174 |bibcode=2020Sci...369.1084. |s2cid=215548188 |last1=Arute |first1=Frank |last2=Arya |first2=Kunal |last3=Babbush |first3=Ryan |last4=Bacon |first4=Dave |last5=Bardin |first5=Joseph C. |last6=Barends |first6=Rami |last7=Boixo |first7=Sergio |last8=Broughton |first8=Michael |last9=Buckley |first9=Bob B. |last10=Buell |first10=David A. |last11=Burkett |first11=Brian |last12=Bushnell |first12=Nicholas |last13=Chen |first13=Yu |last14=Chen |first14=Zijun |last15=Chiaro |first15=Benjamin |last16=Collins |first16=Roberto |last17=Courtney |first17=William |last18=Demura |first18=Sean |last19=Dunsworth |first19=Andrew |last20=Farhi |first20=Edward |last21=Fowler |first21=Austin |last22=Foxen |first22=Brooks |last23=Gidney |first23=Craig |last24=Giustina |first24=Marissa |last25=Graff |first25=Rob |last26=Habegger |first26=Steve |last27=Harrigan |first27=Matthew P. |last28=Ho |first28=Alan |last29=Hong |first29=Sabrina |last30=Huang |first30=Trent |display-authors=1}}

In April 2021, researchers working with Sycamore reported that they were able to realize the ground state of the toric code, a topologically ordered state, with 31 qubits. They showed long-range entanglement properties of the state by measuring non-zero topological entropy, simulating anyon interferometry and their braiding statistics, and preparing a topological quantum error correcting code with one logical qubit.{{cite journal |last1=Satzinger |first1=K. J. |last2=Liu |first2=Y. |last3=Smith |first3=A. |last4=Knapp |first4=C. |last5=Newman |first5=M. |last6=Jones |first6=C. |last7=Chen |first7=Z. |last8=Quintana |first8=C. |last9=Mi |first9=X.|last10=Dunsworth|first10=A. |last11=Gidney |first11=C. |date=2 April 2021 |title=Realizing topologically ordered states on a quantum processor |journal=Science |volume=374 |issue=6572 |pages=1237–1241 |doi=10.1126/science.abi8378 |pmid=34855491 |arxiv=2104.01180 |bibcode=2021Sci...374.1237S |s2cid=233025160}}

In July 2021, a collaboration consisting of Google and multiple universities reported the observation of a discrete time crystal on the Sycamore processor. The chip of 20 qubits was used to obtain a many-body localization configuration of up and down spins. The configuration was stimulated with a laser to achieve a periodically driven "Floquet" system where all up spins are flipped for down and vice versa in periodic cycles which are multiples of the laser's cycles. No energy was absorbed from the laser so the system remained in a protected eigenstate order.{{cite journal |last1=Mi |first1=Xiao |last2=Ippoliti |first2=Matteo |last3=Quintana |first3=Chris |last4=Greene |first4=Amy |last5=Chen |first5=Zijun |last6=Gross |first6=Jonathan |last7=Arute |first7=Frank |last8=Arya |first8=Kunal |last9=Atalaya |first9=Juan|last10=Babbush|first10=Ryan |last11=Bardin |first11=Joseph C. |title=Time-crystalline eigenstate order on a quantum processor |journal=Nature |year=2022 |volume=601 |issue=7894 |pages=531–536 |doi=10.1038/s41586-021-04257-w |pmid=34847568 |pmc=8791837 |arxiv=2107.13571 |bibcode=2022Natur.601..531M}}{{Cite web |last=Wolchover |first=Natalie |date=30 July 2021 |title=Eternal Change for No Energy: A Time Crystal Finally Made Real |url=https://www.quantamagazine.org/first-time-crystal-built-using-googles-quantum-computer-20210730/ |access-date=30 July 2021 |website=Quanta Magazine |language=en}}

In 2022, the Sycamore processor was used to simulate traversable wormhole dynamics.{{cite journal |url=https://www.nature.com/articles/s41586-022-05424-3 |doi=10.1038/s41586-022-05424-3 |title=Traversable wormhole dynamics on a quantum processor |year=2022 |last1=Jafferis |first1=Daniel |author-link=Daniel L. Jafferis |last2=Zlokapa |first2=Alexander |last3=Lykken |first3=Joseph D. |last4=Kolchmeyer |first4=David K. |last5=Davis |first5=Samantha I. |last6=Lauk |first6=Nikolai |last7=Neven |first7=Hartmut |last8=Spiropulu |first8=Maria |journal=Nature |volume=612 |issue=7938 |pages=51–55 |pmid=36450904 |bibcode=2022Natur.612...51J |s2cid=254099207}}

The German Forschungszentrum Jülich cooperated with Google in developing the Sycamore quantum computer, and it will be home to the first universal quantum computer developed in Europe as part of the OpenSuperQ project.{{Cite web |date=2019-07-08 |title=Google Strikes Quantum Research Partnership with Forschungszentrum Jülich |url=https://www.hpcwire.com/2019/07/08/google-strikes-quantum-research-partnership-with-forschungszentrum-julich/ |access-date=2022-04-06 |website=HPCwire |language=en-US}}{{Cite web |title=A Quantum Computer for Europe {{!}} OpenSuperQ |url=https://opensuperq.eu/ |access-date=2022-04-06 |website=opensuperq.eu}}

See also

References