class="wikitable sortable" |
Manufacturer | Name/codename
designation
! Architecture | Layout | data-sort-type=number | Fidelity (%) | Qubits (physical) | data-sort-type="isoDate" | Release date | data-sort-type=number | Quantum volume |
---|
Alpine Quantum Technologies
|PINE System[{{Cite web|title=THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER|url=https://www.aqt.eu/pine-system-19-rack-mounted-quantum-computer/|access-date=21 Feb 2023|website=AQT}}]
| Trapped ion
|
|
| 24[{{Cite journal |last1=Pogorelov|first1=I.|last2= Feldker|first2=T.|first3=al.|last3=Et|title=Compact Ion-Trap Quantum Computing Demonstrator|journal=PRX Quantum |date=2021-06-07|volume=2 |issue=2 |page=020343 |doi=10.1103/PRXQuantum.2.020343 |arxiv=2101.11390|bibcode=2021PRXQ....2b0343P |s2cid=231719119 }}]
| {{date table sorting|2021-06-07}}
| 128[{{Cite web|title=STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128|url=https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/|access-date=24 Feb 2023|website=AQT|date=8 February 2023 }}] |
Atom Computing
|Phoenix
| Neutral atoms in optical lattices
|
|
| 100[{{Cite journal |last1=Barnes|first1=Katrina |last2= Battaglino|first2= Peter|first3=al.|last3=Et|title=Assembly and coherent control of a register of nuclear spin qubits|journal=Nature Communications |year=2022 |volume=13 |issue=1 |page=2779 |doi=10.1038/s41467-022-29977-z |pmid=35589685 |pmc=9120523 |arxiv=2108.04790|bibcode=2022NatCo..13.2779B |s2cid=236965948 }}]
| {{date table sorting|2021-08-10}}
| |
Atom Computing
| {{N/A}}
| Neutral atoms in optical lattices
| 35×35 lattice (with 45 vacancies)
| < 99.5 (2 qubits)[Atom Computing Previews an 1180 Qubit Neutral Atom Processor, Quantum Computing Report]
| 1180[{{Cite web |last=Wilkins |first=Alex |date=October 24, 2023 |title=Record-breaking quantum computer has more than 1000 qubits |url=https://www.newscientist.com/article/2399246-record-breaking-quantum-computer-has-more-than-1000-qubits/ |access-date=2024-01-01 |website=New Scientist |language=en-US}}]
| October 2023
| |
CAS
|Xiaohong[{{Cite web |title=China launches 504-qubit quantum chip, open to global users |url=https://www.chinadaily.com.cn/a/202404/26/WS662b15dfa31082fc043c431e.html |website=www.chinadaily.com.cn/}}]
|Superconducting
| {{N/A}}
| {{N/A}}
|504
|{{date table sorting|2024}}
| |
Google | {{N/A}} | Superconducting | {{N/A}} | 99.5 | 20 | {{date table sorting|2017}}
| |
Google | {{N/A}} | Superconducting | 7×7 lattice | 99.7[{{cite news |last=Lant |first=Karla |url= https://futurism.com/google-is-closer-than-ever-to-a-quantum-computer-breakthrough/ |title= Google is Closer Than Ever to a Quantum Computer Breakthrough |work= Futurism |date=2017-06-23 |accessdate= 2017-10-18}}] | 49[{{cite news |last=Simonite |first=Tom |url= https://www.technologyreview.com/s/604242/googles-new-chip-is-a-stepping-stone-to-quantum-computing-supremacy/ |title= Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy |work=MIT Technology Review |date=2017-04-21 |accessdate= 2017-10-18}}] | data-sort-value="2017-09-01" | Q4 2017 (planned)
| |
Google | Bristlecone | Superconducting transmon | 6×12 lattice | 99 (readout) 99.9 (1 qubit) 99.4 (2 qubits) | 72[{{Citation | date = March 2018 | publisher = Google | work = Research | type = World wide web log | url = https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html | title = A Preview of Bristlecone, Google's New Quantum Processor}}.][{{cite news |last= Greene |first= Tristan |url= https://thenextweb.com/artificial-intelligence/2018/03/06/google-reclaims-quantum-computer-crown-with-72-qubit-processor/ |title= Google reclaims quantum computer crown with 72 qubit processor |work= The Next Web |date= 2018-03-06 |accessdate= 2018-06-27}}] | {{date table sorting|2018-03-05}}
| |
Google | Sycamore | Superconducting transmon | 9×6 lattice | {{N/A}} | 53 effective (54 total) | {{date table sorting|2019}}
| |
Google | Willow | Superconducting transmon | rotated rectangular lattice (see [https://quantumai.google/static/site-assets/downloads/willow-spec-sheet.pdf spec sheet]) | 99.965% (1-qubit) 99.67% (2-qubit) Surface code error correction implemented. | 105 qubits | {{date table sorting|2024-12-09}}[{{cite news |last1=Neven |first1=Hartmut |author1-link=Hartmut Neven |title=Meet Willow, our state-of-the-art quantum chip |url=https://blog.google/technology/research/google-willow-quantum-chip/ |access-date=10 December 2024 |work=Google |date=9 December 2024 |language=en-us}}]
| |
IBM | IBM Q 5 Tenerife | Superconducting | bow tie | 99.897 (average gate) 98.64 (readout)
| 5 | {{date table sorting|2016}}
| |
IBM
| IBM Q 5 Yorktown
| Superconducting
| bow tie
| 99.545 (average gate) 94.2 (readout)
| 5
|
| |
IBM
| IBM Q 14 Melbourne
| Superconducting
| {{N/A}}
| 99.735 (average gate) 97.13 (readout)
| 14
|
| |
IBM | IBM Q 16 Rüschlikon | Superconducting | 2×8 lattice | 99.779 (average gate) 94.24 (readout)
| 16[{{cite web |url= https://www-03.ibm.com/press/us/en/pressrelease/52403.wss |archive-url= https://web.archive.org/web/20170522235145/http://www-03.ibm.com/press/us/en/pressrelease/52403.wss |url-status= dead |archive-date= May 22, 2017 |title= IBM Builds Its Most Powerful Universal Quantum Computing Processors |work= IBM |date=2017-05-17 |accessdate= 2017-10-18}}] | {{date table sorting|2017-05-17}} (Retired: 26 September 2018)[{{Cite web|url= https://www.research.ibm.com/ibm-q/technology/devices/ |title= Quantum devices & simulators|date= 2018-06-05 |website=IBM Q |language= en-US|access-date= 2019-03-29}}]
| |
IBM | IBM Q 17 | Superconducting | {{N/A}} | {{N/A}} | 17 | {{date table sorting|2017-05-17}}
| |
IBM | IBM Q 20 Tokyo | Superconducting | 5×4 lattice | 99.812 (average gate) 93.21 (readout)
| 20[{{cite news|title= IBM Announces Advances to IBM Quantum Systems & Ecosystem|url= https://www-03.ibm.com/press/us/en/pressrelease/53374.wss |archive-url= https://web.archive.org/web/20171110173121/http://www-03.ibm.com/press/us/en/pressrelease/53374.wss |url-status= dead |archive-date= November 10, 2017 |accessdate= 10 November 2017|date= 10 November 2017}}] | {{date table sorting|2017-11-10}}
| |
IBM
| IBM Q 20 Austin
| Superconducting
| 5×4 lattice
| {{N/A}}
| 20
| data-sort-value="2018-07-04" | (Retired: 4 July 2018)
| |
IBM | IBM Q 50 prototype | Superconducting transmon | {{N/A}} | {{N/A}} | 50 | | |
IBM | IBM Q 53 | Superconducting | {{N/A}} | {{N/A}} | 53 | {{date table sorting|October 2019}}
| |
IBM | IBM Eagle | Superconducting transmon | {{N/A}} | {{N/A}} | 127[{{Cite news |last=Brooks |first=Michael |date=January–February 2024 |title=Bring on the noise |work=MIT Technology Review |page=50 |publication-place=Cambridge, Massachusetts |volume=127 |issue=1}}] | {{date table sorting|November 2021}}
| |
IBM | IBM Osprey[{{Cite news |last=Padavic-Callaghan |first=Karmela |date=December 9, 2023 |title=IBM unveils 1000-qubit computer |language=en |pages=13 |work=New Scientist}}] | Superconducting | {{N/A}} | {{N/A}} | 433 | {{date table sorting|November 2022}}
| |
IBM
|IBM Condor[{{Cite web |title=IBM's 'Condor' quantum computer has more than 1000 qubits |url=https://www.newscientist.com/article/2405789-ibms-condor-quantum-computer-has-more-than-1000-qubits/ |access-date=2023-12-21 |website=New Scientist |language=en-US}}]
|Superconducting
|Honeycomb[{{cite journal | arxiv=2410.00916 | last1=AbuGhanem | first1=M. | title=IBM quantum computers: Evolution, performance, and future directions | journal=The Journal of Supercomputing | date=2025 | volume=81 | issue=5 | doi=10.1007/s11227-025-07047-7 }}]
| {{N/A}}
|1121
|December 2023
| |
IBM
|IBM Heron
|Superconducting
| {{N/A}}
| {{N/A}}
|133
|December 2023
| |
IBM
|IBM Heron R2[{{Cite web |title=IBM Quantum delivers on 2022 100x100 performance challenge {{!}} IBM Quantum Computing Blog |url=https://www.ibm.com/quantum/blog/qdc-2024 |access-date=2024-11-25 |website=www.ibm.com |language=en}}]
|Superconducting
|Heavy hex
|96.5 (2 qubits)
|156
|November 2024
| |
IBM
| IBM Armonk[{{Cite web|url=https://quantum-computing.ibm.com/|title=IBM Q Experience|website=IBM Q Experience|language=en|access-date=2020-01-04}}]
| Superconducting
| Single Qubit
| {{N/A}}
| 1
| {{date table sorting|2019-10-16}}
| |
IBM
| IBM Ourense
| Superconducting
| T
| {{N/A}}
| 5
| {{date table sorting|2019-07-03}} |
IBM
| IBM Vigo
| Superconducting
| T
| {{N/A}}
| 5
| {{date table sorting|2019-07-03}}
| |
IBM
| IBM London
| Superconducting
| T
| {{N/A}}
| 5
| {{date table sorting|2019-09-13}}
| |
IBM
| IBM Burlington
| Superconducting
| T
| {{N/A}}
| 5
| {{date table sorting|2019-09-13}}
| |
IBM
| IBM Essex
| Superconducting
| T
| {{N/A}}
| 5
| {{date table sorting|2019-09-13}}
| |
IBM
| IBM Athens[{{Cite web |title=IBM Quantum |url=https://quantum-computing.ibm.com/ |access-date=2023-06-18 |website=IBM Quantum |language=en}}]
| Superconducting
|
| {{N/A}}
| 5
|
|32[{{Cite web |title=IBM Blog |url=https://admin01.prod.blogs.cis.ibm.net/blog/ |access-date=2023-06-18 |website=IBM Blog |language=en-US}}] |
IBM
| IBM Belem
| Superconducting
| Falcon r4T
| {{N/A}}
| 5
|
|16 |
IBM
| IBM Bogotá
| Superconducting
| Falcon r4L
| {{N/A}}
| 5
|
|32 |
IBM
| IBM Casablanca
| Superconducting
| Falcon r4H
| {{N/A}}
| 7
| data-sort-value="2022-03" | (Retired – March 2022)
|32 |
IBM
| IBM Dublin
| Superconducting
|
| {{N/A}}
| 27
|
|64 |
IBM
| IBM Guadalupe
| Superconducting
| Falcon r4P
| {{N/A}}
| 16
|
|32 |
IBM
| IBM Kolkata
| Superconducting
|
| {{N/A}}
| 27
|
|128 |
IBM
| IBM Lima
| Superconducting
| Falcon r4T
| {{N/A}}
| 5
|
|8 |
IBM
| IBM Manhattan
| Superconducting
|
| {{N/A}}
| 65
|
|32 |
IBM
| IBM Montreal
| Superconducting
| Falcon r4
| {{N/A}}
| 27
|
|128 |
IBM
| IBM Mumbai
| Superconducting
| Falcon r5.1
| {{N/A}}
| 27
|
|128 |
IBM
| IBM Paris
| Superconducting
|
| {{N/A}}
| 27
|
|32 |
IBM
| IBM Quito
| Superconducting
| Falcon r4T
| {{N/A}}
| 5
|
|16 |
IBM
| IBM Rome
| Superconducting
|
| {{N/A}}
| 5
|
|32 |
IBM
| IBM Santiago
| Superconducting
|
| {{N/A}}
| 5
|
|32 |
IBM
| IBM Sydney
| Superconducting
| Falcon r4
| {{N/A}}
| 27
|
|32 |
IBM
| IBM Toronto
| Superconducting
| Falcon r4
| {{N/A}}
| 27
|
|32 |
Intel | 17-Qubit Superconducting Test Chip | Superconducting | 40-pin cross gap | {{N/A}} | 17[{{cite news |url= https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/ |title=Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech |newspaper=Intel Newsroom |date=2017-10-10 |accessdate= 2017-10-18}}][{{cite news |last= Novet |first=Jordan |url= https://www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html |title= Intel shows off its latest chip for quantum computing as it looks past Moore's Law |work= CNBC |date=2017-10-10 |accessdate= 2017-10-18}}] | {{date table sorting|2017-10-10}}
| |
Intel | Tangle Lake | Superconducting | 108-pin cross gap | {{N/A}} | 49[{{cite web |url= https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy |title=CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy |date=2018-01-09 |access-date= 2018-01-14}}] | {{date table sorting|2018-01-09}}
| |
Intel
|Tunnel Falls
|Semiconductor spin qubits
|
|
|12[{{Cite web|title=Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing|url=https://www.intel.com/content/www/us/en/newsroom/news/quantum-computing-chip-to-advance-research.html|access-date=2023-07-09|website=Intel Newsroom|date=15 June 2023 }}]
|{{date table sorting|2023-06-15}}
| |
IonQ
|Harmony
|Trapped ion
|All-to-All
|99.73 (1 qubit)
90.02 (2 qubit)
99.30 ({{abbr|SPAM|state preparation and measurement}})
|11[{{Cite web |title=IonQ {{!}} Trapped Ion Quantum Computing |url=https://ionq.com/ |access-date=2023-05-02 |website=IonQ |language=en}}]
|{{date table sorting|2022}}
|8 |
IonQ
|Aria
|Trapped ion
|All-to-All
|99.97 (1 qubit)
98.33 (2 qubit)
98.94 ({{abbr|SPAM|state preparation and measurement}})
|25
|{{date table sorting|2022}}
| |
IonQ
| Forte
| Trapped ion
| 366x1 chain[{{cite arXiv |eprint=2009.11482 |last1=Egan |first1=Laird |last2=Debroy |first2=Dripto M. |last3=Noel |first3=Crystal |last4=Risinger |first4=Andrew |last5=Zhu |first5=Daiwei |last6=Biswas |first6=Debopriyo |last7=Newman |first7=Michael |last8=Li |first8=Muyuan |last9=Brown |first9=Kenneth R. |last10=Cetina |first10=Marko |last11=Monroe |first11=Christopher |title=Fault-Tolerant Operation of a Quantum Error-Correction Code |date=2020 |class=quant-ph }}] All-to-All
| 99.98 (1 qubit) 98.5–99.3 (2 qubit) 99.56 (({{abbr|SPAM|state preparation and measurement}})
| 36 (earlier 32)
| {{date table sorting|2022}} |
IQM
| - | Superconducting | Star | 99.91 (1 qubit) 99.14 (2 qubits) | 5[{{cite web | title=The Power of Co-Design, Hermanni Heimonen, IQM | website=Youtube | date=2022-12-08 | url=https://www.youtube.com/watch?v=dLlUIkIsFig | access-date=2023-06-09}}] | {{date table sorting|2021-11-30}}[{{cite web | title=Finland's first 5-qubit quantum computer is now operational | website=VTTresearch.com | date=2022-12-08 | url=https://www.vttresearch.com/en/news-and-ideas/finlands-first-5-qubit-quantum-computer-now-operational | access-date=2023-06-09}}] | {{N/A}} |
IQM
| - | Superconducting | Square lattice | 99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max) | 20 | {{date table sorting|2023-10-09}}[
]{{cite web
| title=Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues
| website=meetiqm.com
| date=2023-10-09
| url=https://meetiqm.com/resources/press-releases/finland-launches-a-20-qubit-quantum-computer/}}
| 16[{{
]cite web
| title=Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024
| website=quantumzeitgeist.com
| date=2023-10-10
| url=https://quantumzeitgeist.com/finland-unveils-second-quantum-computer-with-20-qubits-aims-for-50-qubit-device-by-2024/
}} |
M Squared Lasers
|Maxwell
| Neutral atoms in optical lattices
|
| 99.5 (3-qubit gate), 99.1 (4-qubit gate)[{{cite journal | arxiv=2112.13025 | doi=10.1088/2058-9565/ac823a | title=High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage | year=2022 | last1=Pelegrí | first1=G. | last2=Daley | first2=A. J. | last3=Pritchard | first3=J. D. | journal=Quantum Science and Technology | volume=7 | issue=4 | page=045020 | bibcode=2022QS&T....7d5020P | s2cid=245502083 }}]
| 200[{{Cite web|title=MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR|url=https://www.m2lasers.com/quantum-datasheet.html?file=Maxwell_Explainer.pdf|access-date=12 April 2023|website=M Squared}}]
| {{date table sorting|2022-11}}
| |
Oxford Quantum Circuits
|Lucy[{{Cite web|title=Lucy|url=https://oxfordquantumcircuits.com/oqc-on-aws|access-date=20 Feb 2023|website=Oxford Quantum Circuits|date=30 November 2021 }}]
| Superconducting
|
|
| 8
| {{date table sorting|2022}}
| |
Oxford Quantum Circuits
|OQC Toshiko[{{Cite web|title=OQC Toshiko|url=https://oqc.tech/tech/toshiko/|access-date=27 Nov 2023|website=Oxford Quantum Circuits|date=24 November 2023 }}]
| Superconducting (Coaxmon)
|
|
| 32
| {{date table sorting|2023}}
| |
Quandela
|[https://cloud.quandela.com/ Ascella]
|Photonics
| {{N/A}}
|99.6 (1 qubit) 93.8 (2 qubits) 86.0 (3 qubits)
|6[{{Cite arXiv |last1=Pont|first1=M.|last2= Corrielli|first2=G.|last3=Fyrillas|first3=A.|first4=al.|last4=et|title=High-fidelity generation of four-photon GHZ states on-chip|date=2022-11-29|eprint=2211.15626|class=quant-ph}}]
|{{date table sorting|2022}}[{{cite news |title=La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online) |newspaper=Le Monde.fr |date=22 November 2022 |url=https://www.lemonde.fr/sciences/article/2022/11/22/la-puissance-d-un-ordinateur-quantique-testee-en-ligne_6151063_1650684.html |publisher=Le Monde}}]
| |
QuTech at TU Delft
|Spin-2
|Semiconductor spin qubits
|
|99 (average gate) 85 (readout)[{{Cite web|title=Spin-2|url=https://www.quantum-inspire.com/backends/spin-2/|access-date=5 May 2021|website=Quantum Inspire}}]
|2
|{{date table sorting|2020}}
| |
QuTech at TU Delft
| -
|Semiconductor spin qubits
|
|
|6[{{Cite web|title=Six-qubit silicon quantum processor sets a record|url=https://physicsworld.com/a/six-qubit-silicon-quantum-processor-sets-a-record/|access-date=2023-07-09|website=PhysicsWorld|date=19 October 2022 }}]
|{{date table sorting|2022-09}}
| |
QuTech at TU Delft
|Starmon-5
|Superconducting
|X configuration
|97 (readout)[{{Cite web|title=Starmon-5|url=https://www.quantum-inspire.com/backends/starmon-5|access-date=4 May 2021|website=Quantum Inspire}}]
|5
|{{date table sorting|2020}}
| |
Quantinuum
|H2[{{Cite web |title=Quantinuum H2 Product Data Sheet |url=https://assets.website-files.com/62b9d45fb3f64842a96c9686/6459acc9b999bb7fb526c4bf_Quantinuum%20H2%20Product%20Data%20Sheet.pdf}}]
|Trapped ion
|Racetrack, All-to-All
|99.997 (1 qubit) 99.87 (2 qubit)
|56[{{Cite web |title=Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation |url=https://www.quantinuum.com/news/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation |access-date=2024-06-06 |website=www.quantinuum.com |language=en}}] (earlier 32)
|{{date table sorting|2023-05-09}}
|8,388,608[{{Cite web |title=Quantinuum Dominates the Quantum Landscape: New World-Record in Quantum Volume |url=https://www.quantinuum.com/blog/quantum-volume-milestone |access-date=2025-05-23 |website=www.quantinuum.com |language=en}}] |
Quantinuum
|H1-1[{{Cite web | title=Quantinuum System Model H1 Product Data Sheet |url=https://assets.website-files.com/62b9d45fb3f64842a96c9686/648c742dd3e744dfeeb7cd06_Quantinuum%20H1%20Product%20Data%20Sheet%20v5.4%2015Jun23.pdf|access-date=8 Jul 2023|website=Quantinuum}}]
| Trapped ion
| 15×15 (Circuit Size)
| 99.996 (1 qubit) 99.914 (2 qubit)
| 20
| {{date table sorting|2022}}
| 1,048,576[{{Cite web |title=Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume |url=https://www.quantinuum.com/news/quantinuum-extends-its-significant-lead-in-quantum-computing-achieving-historic-milestones-for-hardware-fidelity-and-quantum-volume |access-date=2024-04-17 |website=www.quantinuum.com |language=en}}] |
Quantinuum
|H1-2
| Trapped ion
| All-to-All
| 99.996 (1 qubit) 99.7 (2 qubit)
| 12
| {{date table sorting|2022}}
| 4096[{{Cite web|title=Quantinuum Announces Quantum Volume 4096 Achievement|url=https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing|access-date=24 Feb 2023|website=Quantinuum}}] |
Quantware
|Soprano[{{Cite web|title=Soprano specs|url=https://www.quantware.eu/product/soprano|access-date=1 Feb 2023|website=Quantware}}]
| Superconducting
|
| 99.9 (single-qubit gates)
| 5
| {{date table sorting|2021-07}}
| |
Quantware
|Contralto[{{Cite web|title=Contralto specs|url=https://www.quantware.eu/product/contralto|access-date=21 Feb 2023|website=Quantware}}]
| Superconducting
|
| 99.9 (single-qubit gates)
| 25
| {{date table sorting|2022-03-07}}[{{Cite web|title=QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU|url=https://www.quantware.eu/press/quantware-releases-25-qubit-contralto-qpu|access-date=21 Feb 2023|website=Quantware}}]
| |
Quantware
|Tenor[{{Cite web|title=Tenor specs|url=https://www.quantware.eu/product/tenor|access-date=26 Feb 2023|website=Quantware}}]
| Superconducting
|
|
| 64
| {{date table sorting|2023-02-23}}
| |
Rigetti
| Agave
| Superconducting
| {{N/A}}
| 96 (Single-qubit gates)
87 (Two-qubit gates)
| 8
| {{date table sorting|2018-06-04}}[{{Cite web |url= https://rigetti.com/qpu |title= QPU |website= Rigetti Computing |access-date= 2019-03-24 |archive-date= 2019-05-16 |archive-url= https://web.archive.org/web/20190516231438/https://www.rigetti.com/qpu |url-status= dead }}]
| |
Rigetti | Acorn | Superconducting transmon | {{N/A}} | 98.63 (Single-qubit gates)
87.5 (Two-qubit gates)
| 19[{{cite web |url= https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699 |title=Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2 |date=2017-12-18 |accessdate=2018-03-21}}] | {{date table sorting|2017-12-17}}
| |
Rigetti
| Aspen-1
| Superconducting
| {{N/A}}
| 93.23 (Single-qubit gates)
90.84 (Two-qubit gates)
| 16
| {{date table sorting|2018-11-30}}
| |
Rigetti
|Aspen-4
| Superconducting
|
|99.88 (Single-qubit gates)
94.42 (Two-qubit gates)
|13
|{{date table sorting|2019-03-10}}
| |
Rigetti
|Aspen-7
| Superconducting
|
|99.23 (Single-qubit gates)
95.2 (Two-qubit gates)
|28
|{{date table sorting|2019-11-15}}
| |
Rigetti
|Aspen-8
| Superconducting
|
|99.22 (Single-qubit gates)
94.34 (Two-qubit gates)
|31
|{{date table sorting|2020-05-05}}
| |
Rigetti
|Aspen-9
| Superconducting
|
|99.39 (Single-qubit gates)
94.28 (Two-qubit gates)
|32
|{{date table sorting|2021-02-06}}
| |
Rigetti
|Aspen-10
| Superconducting
|
|99.37 (Single-qubit gates)
94.66 (Two-qubit gates)
|32
|{{date table sorting|2021-11-04}}
| |
Rigetti
|Aspen-11
| Superconducting
|Octagonal[{{Cite journal |last1=Pelofske |first1=Elijah |last2=Bärtschi |first2=Andreas |last3=Eidenbenz |first3=Stephan |date=2022 |title=Quantum Volume in Practice: What Users Can Expect from NISQ Devices |journal=IEEE Transactions on Quantum Engineering |volume=3 |pages=1–19 |doi=10.1109/TQE.2022.3184764 |arxiv=2203.03816 |s2cid=247315182 |issn=2689-1808}}]
|99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY)
|40
|{{date table sorting|2021-12-15}} |
Rigetti
|Aspen-M-1
|Superconducting transmon
|Octagonal
|99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY)
|80
|{{date table sorting|2022-02-15}}
|8 |
Rigetti
|Aspen-M-2
|Superconducting transmon
|
|99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY)
|80
|{{date table sorting|2022-08-01}}
| |
Rigetti | Aspen-M-3 | Superconducting transmon | {{N/A}} | 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) | 80[{{cite web |url= https://qcs.rigetti.com/qpus |title=Aspen-M-3 Quantum Processor|accessdate=2023-02-20}}] | {{date table sorting|2022-12-2}}
| |
Rigetti | Ankaa-2 | Superconducting transmon | {{N/A}} | 98 (Two-qubit gates) | 84[{{Cite press release |last=Rigetti & Company LLC |date=2024-01-04 |title=Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs |url=https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html |access-date=2024-01-23 |website=GlobeNewswire News Room |language=en}}] | {{date table sorting|2023-12-20}}
| |
RIKEN
| RIKEN[{{Cite web |title=Japan's first homemade quantum computer goes online |url=https://www.riken.jp/en/news_pubs/news/2023/20230921_3/index.html |access-date=2024-01-25 |website=www.riken.jp |language=en}}] | Superconducting | {{N/A}} | {{N/A}} | 53 effective (64 total)[{{Cite web |title=Japanese joint research group launches quantum computing cloud service |url=https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0324-01.html |access-date=2024-01-25 |website=Fujitsu Global |language=en}}][{{Cite web |title=RIKEN and Fujitsu develop 64-qubit quantum computer |url=https://www.riken.jp/en/news_pubs/news/2023/20231005_2/index.html |access-date=2024-01-25 |website=www.riken.jp |language=en}}]
| {{date table sorting|2023-03-27}} | {{N/A}} |
SaxonQ
| Princess
| Nitrogen-vacancy center
|
|
| 4[{{Cite web|title=All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ|url=https://qci.dlr.de/en/all-tests-passed-dlr-qci-accepts-4-qubit-demonstrator-sq-rt-with-princess-qpu-from-saxonq/|access-date=16 Jul 2024}}]
| {{date table sorting|2024-06-26}}
| |
SpinQ
|Triangulum
| Nuclear magnetic resonance
|
|
| 3[{{Cite web|title=Triangulum3 qubits desktop NMR quantum computer|url=https://www.spinquanta.com/products-solutions/Triangulum|access-date=24 Feb 2023|website=AQT}}]
| {{date table sorting|2021-09}}
| |
USTC | Jiuzhang | Photonics | {{N/A}} | {{N/A}} | 76[{{Cite journal|last=Ball|first=Philip|date=2020-12-03|title=Physicists in China challenge Google's 'quantum advantage'|journal=Nature|language=en|volume=588|issue=7838|pages=380|doi=10.1038/d41586-020-03434-7|pmid=33273711|bibcode=2020Natur.588..380B|doi-access=free}}][{{Cite web |last=Letzter |first=Rafi – Staff Writer 07 |date=7 December 2020 |title=China claims fastest quantum computer in the world |url=https://www.livescience.com/china-quantum-supremacy.html |access-date=2020-12-19 |website=livescience.com |language=en}}] | {{date table sorting|2020}}
| |
USTC
| Zuchongzhi | Superconducting | {{N/A}} | {{N/A}} | 62[{{Cite journal|last=Ball|first=Philip|date=2020-12-03|title=Strong Quantum Computational Advantage Using a Superconducting Quantum Processor|journal=Physical Review Letters|volume=127|issue=18|page=180501 |doi=10.1103/PhysRevLett.127.180501|pmid=34767433 |arxiv=2106.14734 |bibcode=2021PhRvL.127r0501W |s2cid=235658633 }}]
| {{date table sorting|2020}}
| |
USTC
|Zuchongzhi 2.1
|Superconducting
|lattice[{{cite journal | arxiv=2109.03494 | last1=Zhu | first1=Qingling | last2=Cao | first2=Sirui | last3=Chen | first3=Fusheng | last4=Chen | first4=Ming-Cheng | last5=Chen | first5=Xiawei | last6=Chung | first6=Tung-Hsun | last7=Deng | first7=Hui | last8=Du | first8=Yajie | last9=Fan | first9=Daojin | last10=Gong | first10=Ming | last11=Guo | first11=Cheng | last12=Guo | first12=Chu | last13=Guo | first13=Shaojun | last14=Han | first14=Lianchen | last15=Hong | first15=Linyin | last16=Huang | first16=He-Liang | last17=Huo | first17=Yong-Heng | last18=Li | first18=Liping | last19=Li | first19=Na | last20=Li | first20=Shaowei | last21=Li | first21=Yuan | last22=Liang | first22=Futian | last23=Lin | first23=Chun | last24=Lin | first24=Jin | last25=Qian | first25=Haoran | last26=Qiao | first26=Dan | last27=Rong | first27=Hao | last28=Su | first28=Hong | last29=Sun | first29=Lihua | last30=Wang | first30=Liangyuan | title=Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling | journal=Science Bulletin | year=2021 | volume=67 | issue=3 | pages=240–245 | doi=10.1016/j.scib.2021.10.017 | pmid=36546072 | s2cid=237442167 | display-authors=1 }}]
|99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout)
|66[{{Cite journal |last1=Wu |first1=Yulin |last2=Bao |first2=Wan-Su |last3=Cao |first3=Sirui |last4=Chen |first4=Fusheng |last5=Chen |first5=Ming-Cheng |last6=Chen |first6=Xiawei |last7=Chung |first7=Tung-Hsun |last8=Deng |first8=Hui |last9=Du |first9=Yajie |last10=Fan |first10=Daojin |last11=Gong |first11=Ming |last12=Guo |first12=Cheng |last13=Guo |first13=Chu |last14=Guo |first14=Shaojun |last15=Han |first15=Lianchen |date=2021-10-25 |title=Strong Quantum Computational Advantage Using a Superconducting Quantum Processor |url=https://link.aps.org/doi/10.1103/PhysRevLett.127.180501 |journal=Physical Review Letters |language=en |volume=127 |issue=18 |page=180501 |doi=10.1103/PhysRevLett.127.180501 |pmid=34767433 |arxiv=2106.14734 |bibcode=2021PhRvL.127r0501W |s2cid=235658633 |issn=0031-9007}}]
|{{date table sorting|2021}}
| |
USTC
|Zuchongzhi 3.0[{{Cite journal |last1=Gao |first1=Dongxin |last2=Fan |first2=Daojin |last3=Zha |first3=Chen |last4=Bei |first4=Jiahao |last5=Cai |first5=Guoqing |last6=Cai |first6=Jianbing |last7=Cao |first7=Sirui |last8=Zeng |first8=Xiangdong |last9=Chen |first9=Fusheng |last10=Chen |first10=Jiang |last11=Chen |first11=Kefu |last12=Chen |first12=Xiawei |last13=Chen |first13=Xiqing |last14=Chen |first14=Zhe |last15=Chen |first15=Zhiyuan |date=2025 |title=Establishing a New Benchmark in Quantum Computational Advantage with 105-qubit Zuchongzhi 3.0 Processor |journal=Quantum Physics |volume=134 |issue=9 |page=090601 |doi=10.1103/PhysRevLett.134.090601 |pmid=40131086 |arxiv=2412.11924 |bibcode=2025PhRvL.134i0601G }}]
|Superconducting transmon
|15 x 7
|99.90 (Single-qubit gates) 99.62 (Two-qubit gates) 99.18 (Readout)
|105
|December 16, 2024
| |
Xanadu
|Borealis[{{Cite journal |last1=Madsen |first1=Lars S. |last2=Laudenbach |first2=Fabian |last3=Askarani |first3=Mohsen Falamarzi |last4=Rortais |first4=Fabien |last5=Vincent |first5=Trevor |last6=Bulmer |first6=Jacob F. F. |last7=Miatto |first7=Filippo M. |last8=Neuhaus |first8=Leonhard |last9=Helt |first9=Lukas G. |last10=Collins |first10=Matthew J. |last11=Lita |first11=Adriana E. |date=June 2022 |title=Quantum computational advantage with a programmable photonic processor |journal=Nature |language=en |volume=606 |issue=7912 |pages=75–81 |doi=10.1038/s41586-022-04725-x |pmid=35650354 |pmc=9159949 |bibcode=2022Natur.606...75M |s2cid=249276257 |issn=1476-4687}}]
|Photonics (Continuous-variable)
| {{N/A}}
| {{N/A}}
|216
|{{date table sorting|2022}}
| |
Xanadu
|X8 [{{Cite web|title=A new kind of quantum|url=https://spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum|access-date=2021-01-09|website=spie.org}}]
|Photonics (Continuous-variable)
| {{N/A}}
| {{N/A}}
|8
| {{date table sorting|2020}}
| |
Xanadu
|X12
|Photonics (Continuous-variable)
| {{N/A}}
| {{N/A}}
|12
| {{date table sorting|2020}}
| |
Xanadu
|X24
|Photonics (Continuous-variable)
| {{N/A}}
| {{N/A}}
|24
| {{date table sorting|2020}}
| |