List of quantum processors

{{Short description|none}}

{{Primary sources|date=July 2022}}

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published physical qubit numbers do not reflect the performance levels of the processor. This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).{{Cite arXiv |last1=Wack|first1=Andrew|last2=Paik|first2=Hanhee|last3=Javadi-Abhari|first3=Ali|last4=Jurcevic|first4=Petar|last5=Faro|first5=Ismael|last6=Gambetta|first6=Jay M.|last7=Johnson|first7=Blake R.|title=A practical heuristic for finding graph minors|date=29 Oct 2021|eprint=2110.14108|class=quant-ph}}

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

class="wikitable sortable"
ManufacturerName/codename

designation

! Architecture

Layoutdata-sort-type=number | Fidelity (%)Qubits (physical)data-sort-type="isoDate" | Release datedata-sort-type=number | Quantum volume
Alpine Quantum Technologies

|PINE System{{Cite web|title=THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER|url=https://www.aqt.eu/pine-system-19-rack-mounted-quantum-computer/|access-date=21 Feb 2023|website=AQT}}

| Trapped ion

|

|

| 24{{Cite journal |last1=Pogorelov|first1=I.|last2= Feldker|first2=T.|first3=al.|last3=Et|title=Compact Ion-Trap Quantum Computing Demonstrator|journal=PRX Quantum |date=2021-06-07|volume=2 |issue=2 |page=020343 |doi=10.1103/PRXQuantum.2.020343 |arxiv=2101.11390|bibcode=2021PRXQ....2b0343P |s2cid=231719119 }}

| {{date table sorting|2021-06-07}}

| 128{{Cite web|title=STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128|url=https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/|access-date=24 Feb 2023|website=AQT|date=8 February 2023 }}

Atom Computing

|Phoenix

| Neutral atoms in optical lattices

|

|

| 100{{Cite journal |last1=Barnes|first1=Katrina |last2= Battaglino|first2= Peter|first3=al.|last3=Et|title=Assembly and coherent control of a register of nuclear spin qubits|journal=Nature Communications |year=2022 |volume=13 |issue=1 |page=2779 |doi=10.1038/s41467-022-29977-z |pmid=35589685 |pmc=9120523 |arxiv=2108.04790|bibcode=2022NatCo..13.2779B |s2cid=236965948 }}

| {{date table sorting|2021-08-10}}

|

Atom Computing

| {{N/A}}

| Neutral atoms in optical lattices

| 35×35 lattice (with 45 vacancies)

| < 99.5 (2 qubits)Atom Computing Previews an 1180 Qubit Neutral Atom Processor, Quantum Computing Report

| 1180{{Cite web |last=Wilkins |first=Alex |date=October 24, 2023 |title=Record-breaking quantum computer has more than 1000 qubits |url=https://www.newscientist.com/article/2399246-record-breaking-quantum-computer-has-more-than-1000-qubits/ |access-date=2024-01-01 |website=New Scientist |language=en-US}}

| October 2023

|

CAS

|Xiaohong{{Cite web |title=China launches 504-qubit quantum chip, open to global users |url=https://www.chinadaily.com.cn/a/202404/26/WS662b15dfa31082fc043c431e.html |website=www.chinadaily.com.cn/}}

|Superconducting

| {{N/A}}

| {{N/A}}

|504

|{{date table sorting|2024}}

|

Google{{N/A}}Superconducting{{N/A}}99.520{{date table sorting|2017}}

|

Google{{N/A}}Superconducting7×7 lattice99.7{{cite news |last=Lant |first=Karla |url= https://futurism.com/google-is-closer-than-ever-to-a-quantum-computer-breakthrough/ |title= Google is Closer Than Ever to a Quantum Computer Breakthrough |work= Futurism |date=2017-06-23 |accessdate= 2017-10-18}}49{{cite news |last=Simonite |first=Tom |url= https://www.technologyreview.com/s/604242/googles-new-chip-is-a-stepping-stone-to-quantum-computing-supremacy/ |title= Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy |work=MIT Technology Review |date=2017-04-21 |accessdate= 2017-10-18}}data-sort-value="2017-09-01" | Q4 2017 (planned)

|

GoogleBristleconeSuperconducting transmon6×12 lattice99 (readout)
99.9 (1 qubit)
99.4 (2 qubits)
72{{Citation | date = March 2018 | publisher = Google | work = Research | type = World wide web log | url = https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html | title = A Preview of Bristlecone, Google's New Quantum Processor}}.{{cite news |last= Greene |first= Tristan |url= https://thenextweb.com/artificial-intelligence/2018/03/06/google-reclaims-quantum-computer-crown-with-72-qubit-processor/ |title= Google reclaims quantum computer crown with 72 qubit processor |work= The Next Web |date= 2018-03-06 |accessdate= 2018-06-27}}{{date table sorting|2018-03-05}}

|

GoogleSycamoreSuperconducting transmon9×6 lattice{{N/A}}53 effective (54 total){{date table sorting|2019}}

|

GoogleWillowSuperconducting transmonrotated rectangular lattice (see [https://quantumai.google/static/site-assets/downloads/willow-spec-sheet.pdf spec sheet])99.965% (1-qubit)
99.67% (2-qubit)
Surface code error correction implemented.
105 qubits{{date table sorting|2024-12-09}}{{cite news |last1=Neven |first1=Hartmut |author1-link=Hartmut Neven |title=Meet Willow, our state-of-the-art quantum chip |url=https://blog.google/technology/research/google-willow-quantum-chip/ |access-date=10 December 2024 |work=Google |date=9 December 2024 |language=en-us}}

|

IBMIBM Q 5 TenerifeSuperconductingbow tie99.897 (average gate)
98.64 (readout)

| 5

{{date table sorting|2016}}

|

IBM

| IBM Q 5 Yorktown

| Superconducting

| bow tie

| 99.545 (average gate)
94.2 (readout)

| 5

|

|

IBM

| IBM Q 14 Melbourne

| Superconducting

| {{N/A}}

| 99.735 (average gate)
97.13 (readout)

| 14

|

|

IBMIBM Q 16 RüschlikonSuperconducting2×8 lattice99.779 (average gate)
94.24 (readout)

| 16{{cite web |url= https://www-03.ibm.com/press/us/en/pressrelease/52403.wss |archive-url= https://web.archive.org/web/20170522235145/http://www-03.ibm.com/press/us/en/pressrelease/52403.wss |url-status= dead |archive-date= May 22, 2017 |title= IBM Builds Its Most Powerful Universal Quantum Computing Processors |work= IBM |date=2017-05-17 |accessdate= 2017-10-18}}

{{date table sorting|2017-05-17}}
(Retired: 26 September 2018){{Cite web|url= https://www.research.ibm.com/ibm-q/technology/devices/ |title= Quantum devices & simulators|date= 2018-06-05 |website=IBM Q |language= en-US|access-date= 2019-03-29}}

|

IBMIBM Q 17Superconducting{{N/A}}{{N/A}}17{{date table sorting|2017-05-17}}

|

IBMIBM Q 20 TokyoSuperconducting5×4 lattice99.812 (average gate)
93.21 (readout)

| 20{{cite news|title= IBM Announces Advances to IBM Quantum Systems & Ecosystem|url= https://www-03.ibm.com/press/us/en/pressrelease/53374.wss |archive-url= https://web.archive.org/web/20171110173121/http://www-03.ibm.com/press/us/en/pressrelease/53374.wss |url-status= dead |archive-date= November 10, 2017 |accessdate= 10 November 2017|date= 10 November 2017}}

{{date table sorting|2017-11-10}}

|

IBM

| IBM Q 20 Austin

| Superconducting

| 5×4 lattice

| {{N/A}}

| 20

| data-sort-value="2018-07-04" | (Retired: 4 July 2018)

|

IBMIBM Q 50 prototypeSuperconducting transmon{{N/A}}{{N/A}}50|
IBMIBM Q 53Superconducting{{N/A}}{{N/A}}53{{date table sorting|October 2019}}

|

IBMIBM EagleSuperconducting transmon{{N/A}}{{N/A}}127{{Cite news |last=Brooks |first=Michael |date=January–February 2024 |title=Bring on the noise |work=MIT Technology Review |page=50 |publication-place=Cambridge, Massachusetts |volume=127 |issue=1}}{{date table sorting|November 2021}}

|

IBMIBM Osprey{{Cite news |last=Padavic-Callaghan |first=Karmela |date=December 9, 2023 |title=IBM unveils 1000-qubit computer |language=en |pages=13 |work=New Scientist}}Superconducting{{N/A}}{{N/A}}433{{date table sorting|November 2022}}

|

IBM

|IBM Condor{{Cite web |title=IBM's 'Condor' quantum computer has more than 1000 qubits |url=https://www.newscientist.com/article/2405789-ibms-condor-quantum-computer-has-more-than-1000-qubits/ |access-date=2023-12-21 |website=New Scientist |language=en-US}}

|Superconducting

|Honeycomb{{cite journal | arxiv=2410.00916 | last1=AbuGhanem | first1=M. | title=IBM quantum computers: Evolution, performance, and future directions | journal=The Journal of Supercomputing | date=2025 | volume=81 | issue=5 | doi=10.1007/s11227-025-07047-7 }}

| {{N/A}}

|1121

|December 2023

|

IBM

|IBM Heron

|Superconducting

| {{N/A}}

| {{N/A}}

|133

|December 2023

|

IBM

|IBM Heron R2{{Cite web |title=IBM Quantum delivers on 2022 100x100 performance challenge {{!}} IBM Quantum Computing Blog |url=https://www.ibm.com/quantum/blog/qdc-2024 |access-date=2024-11-25 |website=www.ibm.com |language=en}}

|Superconducting

|Heavy hex

|96.5 (2 qubits)

|156

|November 2024

|

IBM

| IBM Armonk{{Cite web|url=https://quantum-computing.ibm.com/|title=IBM Q Experience|website=IBM Q Experience|language=en|access-date=2020-01-04}}

| Superconducting

| Single Qubit

| {{N/A}}

| 1

| {{date table sorting|2019-10-16}}

|

IBM

| IBM Ourense

| Superconducting

| T

| {{N/A}}

| 5

| {{date table sorting|2019-07-03}}

IBM

| IBM Vigo

| Superconducting

| T

| {{N/A}}

| 5

| {{date table sorting|2019-07-03}}

|

IBM

| IBM London

| Superconducting

| T

| {{N/A}}

| 5

| {{date table sorting|2019-09-13}}

|

IBM

| IBM Burlington

| Superconducting

| T

| {{N/A}}

| 5

| {{date table sorting|2019-09-13}}

|

IBM

| IBM Essex

| Superconducting

| T

| {{N/A}}

| 5

| {{date table sorting|2019-09-13}}

|

IBM

| IBM Athens{{Cite web |title=IBM Quantum |url=https://quantum-computing.ibm.com/ |access-date=2023-06-18 |website=IBM Quantum |language=en}}

| Superconducting

|

| {{N/A}}

| 5

|

|32{{Cite web |title=IBM Blog |url=https://admin01.prod.blogs.cis.ibm.net/blog/ |access-date=2023-06-18 |website=IBM Blog |language=en-US}}

IBM

| IBM Belem

| Superconducting

| Falcon r4T

| {{N/A}}

| 5

|

|16

IBM

| IBM Bogotá

| Superconducting

| Falcon r4L

| {{N/A}}

| 5

|

|32

IBM

| IBM Casablanca

| Superconducting

| Falcon r4H

| {{N/A}}

| 7

| data-sort-value="2022-03" | (Retired – March 2022)

|32

IBM

| IBM Dublin

| Superconducting

|

| {{N/A}}

| 27

|

|64

IBM

| IBM Guadalupe

| Superconducting

| Falcon r4P

| {{N/A}}

| 16

|

|32

IBM

| IBM Kolkata

| Superconducting

|

| {{N/A}}

| 27

|

|128

IBM

| IBM Lima

| Superconducting

| Falcon r4T

| {{N/A}}

| 5

|

|8

IBM

| IBM Manhattan

| Superconducting

|

| {{N/A}}

| 65

|

|32

IBM

| IBM Montreal

| Superconducting

| Falcon r4

| {{N/A}}

| 27

|

|128

IBM

| IBM Mumbai

| Superconducting

| Falcon r5.1

| {{N/A}}

| 27

|

|128

IBM

| IBM Paris

| Superconducting

|

| {{N/A}}

| 27

|

|32

IBM

| IBM Quito

| Superconducting

| Falcon r4T

| {{N/A}}

| 5

|

|16

IBM

| IBM Rome

| Superconducting

|

| {{N/A}}

| 5

|

|32

IBM

| IBM Santiago

| Superconducting

|

| {{N/A}}

| 5

|

|32

IBM

| IBM Sydney

| Superconducting

| Falcon r4

| {{N/A}}

| 27

|

|32

IBM

| IBM Toronto

| Superconducting

| Falcon r4

| {{N/A}}

| 27

|

|32

Intel17-Qubit Superconducting Test ChipSuperconducting40-pin cross gap{{N/A}}17{{cite news |url= https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/ |title=Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech |newspaper=Intel Newsroom |date=2017-10-10 |accessdate= 2017-10-18}}{{cite news |last= Novet |first=Jordan |url= https://www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html |title= Intel shows off its latest chip for quantum computing as it looks past Moore's Law |work= CNBC |date=2017-10-10 |accessdate= 2017-10-18}}{{date table sorting|2017-10-10}}

|

IntelTangle LakeSuperconducting108-pin cross gap{{N/A}}49{{cite web |url= https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy |title=CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy |date=2018-01-09 |access-date= 2018-01-14}}{{date table sorting|2018-01-09}}

|

Intel

|Tunnel Falls

|Semiconductor spin qubits

|

|

|12{{Cite web|title=Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing|url=https://www.intel.com/content/www/us/en/newsroom/news/quantum-computing-chip-to-advance-research.html|access-date=2023-07-09|website=Intel Newsroom|date=15 June 2023 }}

|{{date table sorting|2023-06-15}}

|

IonQ

|Harmony

|Trapped ion

|All-to-All

|99.73 (1 qubit)

90.02 (2 qubit)

99.30 ({{abbr|SPAM|state preparation and measurement}})

|11{{Cite web |title=IonQ {{!}} Trapped Ion Quantum Computing |url=https://ionq.com/ |access-date=2023-05-02 |website=IonQ |language=en}}

|{{date table sorting|2022}}

|8

IonQ

|Aria

|Trapped ion

|All-to-All

|99.97 (1 qubit)

98.33 (2 qubit)

98.94 ({{abbr|SPAM|state preparation and measurement}})

|25

|{{date table sorting|2022}}

|

IonQ

| Forte

| Trapped ion

| 366x1 chain{{cite arXiv |eprint=2009.11482 |last1=Egan |first1=Laird |last2=Debroy |first2=Dripto M. |last3=Noel |first3=Crystal |last4=Risinger |first4=Andrew |last5=Zhu |first5=Daiwei |last6=Biswas |first6=Debopriyo |last7=Newman |first7=Michael |last8=Li |first8=Muyuan |last9=Brown |first9=Kenneth R. |last10=Cetina |first10=Marko |last11=Monroe |first11=Christopher |title=Fault-Tolerant Operation of a Quantum Error-Correction Code |date=2020 |class=quant-ph }} All-to-All

| 99.98 (1 qubit)
98.5–99.3 (2 qubit) 99.56 (({{abbr|SPAM|state preparation and measurement}})

| 36 (earlier 32)

| {{date table sorting|2022}}

IQM

| -

SuperconductingStar99.91 (1 qubit)
99.14 (2 qubits)
5{{cite web | title=The Power of Co-Design, Hermanni Heimonen, IQM | website=Youtube | date=2022-12-08 | url=https://www.youtube.com/watch?v=dLlUIkIsFig | access-date=2023-06-09}}{{date table sorting|2021-11-30}}{{cite web | title=Finland's first 5-qubit quantum computer is now operational | website=VTTresearch.com | date=2022-12-08 | url=https://www.vttresearch.com/en/news-and-ideas/finlands-first-5-qubit-quantum-computer-now-operational | access-date=2023-06-09}}{{N/A}}
IQM

| -

SuperconductingSquare lattice99.91 (1 qubit median)
99.944 (1 qubit max)
98.25 (2 qubits median)
99.1 (2 qubits max)
20{{date table sorting|2023-10-09}}

{{cite web

| title=Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues

| website=meetiqm.com

| date=2023-10-09

| url=https://meetiqm.com/resources/press-releases/finland-launches-a-20-qubit-quantum-computer/}}

16{{

cite web

| title=Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024

| website=quantumzeitgeist.com

| date=2023-10-10

| url=https://quantumzeitgeist.com/finland-unveils-second-quantum-computer-with-20-qubits-aims-for-50-qubit-device-by-2024/

}}

M Squared Lasers

|Maxwell

| Neutral atoms in optical lattices

|

| 99.5 (3-qubit gate), 99.1 (4-qubit gate){{cite journal | arxiv=2112.13025 | doi=10.1088/2058-9565/ac823a | title=High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage | year=2022 | last1=Pelegrí | first1=G. | last2=Daley | first2=A. J. | last3=Pritchard | first3=J. D. | journal=Quantum Science and Technology | volume=7 | issue=4 | page=045020 | bibcode=2022QS&T....7d5020P | s2cid=245502083 }}

| 200{{Cite web|title=MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR|url=https://www.m2lasers.com/quantum-datasheet.html?file=Maxwell_Explainer.pdf|access-date=12 April 2023|website=M Squared}}

| {{date table sorting|2022-11}}

|

Oxford Quantum Circuits

|Lucy{{Cite web|title=Lucy|url=https://oxfordquantumcircuits.com/oqc-on-aws|access-date=20 Feb 2023|website=Oxford Quantum Circuits|date=30 November 2021 }}

| Superconducting

|

|

| 8

| {{date table sorting|2022}}

|

Oxford Quantum Circuits

|OQC Toshiko{{Cite web|title=OQC Toshiko|url=https://oqc.tech/tech/toshiko/|access-date=27 Nov 2023|website=Oxford Quantum Circuits|date=24 November 2023 }}

| Superconducting (Coaxmon)

|

|

| 32

| {{date table sorting|2023}}

|

Quandela

|[https://cloud.quandela.com/ Ascella]

|Photonics

| {{N/A}}

|99.6 (1 qubit)
93.8 (2 qubits)
86.0 (3 qubits)

|6{{Cite arXiv |last1=Pont|first1=M.|last2= Corrielli|first2=G.|last3=Fyrillas|first3=A.|first4=al.|last4=et|title=High-fidelity generation of four-photon GHZ states on-chip|date=2022-11-29|eprint=2211.15626|class=quant-ph}}

|{{date table sorting|2022}}{{cite news |title=La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online) |newspaper=Le Monde.fr |date=22 November 2022 |url=https://www.lemonde.fr/sciences/article/2022/11/22/la-puissance-d-un-ordinateur-quantique-testee-en-ligne_6151063_1650684.html |publisher=Le Monde}}

|

QuTech at TU Delft

|Spin-2

|Semiconductor spin qubits

|

|99 (average gate)
85 (readout){{Cite web|title=Spin-2|url=https://www.quantum-inspire.com/backends/spin-2/|access-date=5 May 2021|website=Quantum Inspire}}

|2

|{{date table sorting|2020}}

|

QuTech at TU Delft

| -

|Semiconductor spin qubits

|

|

|6{{Cite web|title=Six-qubit silicon quantum processor sets a record|url=https://physicsworld.com/a/six-qubit-silicon-quantum-processor-sets-a-record/|access-date=2023-07-09|website=PhysicsWorld|date=19 October 2022 }}

|{{date table sorting|2022-09}}

|

QuTech at TU Delft

|Starmon-5

|Superconducting

|X configuration

|97 (readout){{Cite web|title=Starmon-5|url=https://www.quantum-inspire.com/backends/starmon-5|access-date=4 May 2021|website=Quantum Inspire}}

|5

|{{date table sorting|2020}}

|

Quantinuum

|H2{{Cite web |title=Quantinuum H2 Product Data Sheet |url=https://assets.website-files.com/62b9d45fb3f64842a96c9686/6459acc9b999bb7fb526c4bf_Quantinuum%20H2%20Product%20Data%20Sheet.pdf}}

|Trapped ion

|Racetrack, All-to-All

|99.997 (1 qubit)
99.87 (2 qubit)

|56{{Cite web |title=Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation |url=https://www.quantinuum.com/news/quantinuums-h-series-hits-56-physical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation |access-date=2024-06-06 |website=www.quantinuum.com |language=en}} (earlier 32)

|{{date table sorting|2023-05-09}}

|8,388,608{{Cite web |title=Quantinuum Dominates the Quantum Landscape: New World-Record in Quantum Volume |url=https://www.quantinuum.com/blog/quantum-volume-milestone |access-date=2025-05-23 |website=www.quantinuum.com |language=en}}

Quantinuum

|H1-1{{Cite web | title=Quantinuum System Model H1 Product Data Sheet |url=https://assets.website-files.com/62b9d45fb3f64842a96c9686/648c742dd3e744dfeeb7cd06_Quantinuum%20H1%20Product%20Data%20Sheet%20v5.4%2015Jun23.pdf|access-date=8 Jul 2023|website=Quantinuum}}

| Trapped ion

| 15×15 (Circuit Size)

| 99.996 (1 qubit)
99.914 (2 qubit)

| 20

| {{date table sorting|2022}}

| 1,048,576{{Cite web |title=Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume |url=https://www.quantinuum.com/news/quantinuum-extends-its-significant-lead-in-quantum-computing-achieving-historic-milestones-for-hardware-fidelity-and-quantum-volume |access-date=2024-04-17 |website=www.quantinuum.com |language=en}}

Quantinuum

|H1-2

| Trapped ion

| All-to-All

| 99.996 (1 qubit)
99.7 (2 qubit)

| 12

| {{date table sorting|2022}}

| 4096{{Cite web|title=Quantinuum Announces Quantum Volume 4096 Achievement|url=https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing|access-date=24 Feb 2023|website=Quantinuum}}

Quantware

|Soprano{{Cite web|title=Soprano specs|url=https://www.quantware.eu/product/soprano|access-date=1 Feb 2023|website=Quantware}}

| Superconducting

|

| 99.9 (single-qubit gates)

| 5

| {{date table sorting|2021-07}}

|

Quantware

|Contralto{{Cite web|title=Contralto specs|url=https://www.quantware.eu/product/contralto|access-date=21 Feb 2023|website=Quantware}}

| Superconducting

|

| 99.9 (single-qubit gates)

| 25

| {{date table sorting|2022-03-07}}{{Cite web|title=QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU|url=https://www.quantware.eu/press/quantware-releases-25-qubit-contralto-qpu|access-date=21 Feb 2023|website=Quantware}}

|

Quantware

|Tenor{{Cite web|title=Tenor specs|url=https://www.quantware.eu/product/tenor|access-date=26 Feb 2023|website=Quantware}}

| Superconducting

|

|

| 64

| {{date table sorting|2023-02-23}}

|

Rigetti

| Agave

| Superconducting

| {{N/A}}

| 96 (Single-qubit gates)

87 (Two-qubit gates)

| 8

| {{date table sorting|2018-06-04}}{{Cite web |url= https://rigetti.com/qpu |title= QPU |website= Rigetti Computing |access-date= 2019-03-24 |archive-date= 2019-05-16 |archive-url= https://web.archive.org/web/20190516231438/https://www.rigetti.com/qpu |url-status= dead }}

|

RigettiAcornSuperconducting transmon{{N/A}}98.63 (Single-qubit gates)

87.5 (Two-qubit gates)

| 19{{cite web |url= https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699 |title=Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2 |date=2017-12-18 |accessdate=2018-03-21}}

{{date table sorting|2017-12-17}}

|

Rigetti

| Aspen-1

| Superconducting

| {{N/A}}

| 93.23 (Single-qubit gates)

90.84 (Two-qubit gates)

| 16

| {{date table sorting|2018-11-30}}

|

Rigetti

|Aspen-4

| Superconducting

|

|99.88 (Single-qubit gates)

94.42 (Two-qubit gates)

|13

|{{date table sorting|2019-03-10}}

|

Rigetti

|Aspen-7

| Superconducting

|

|99.23 (Single-qubit gates)

95.2 (Two-qubit gates)

|28

|{{date table sorting|2019-11-15}}

|

Rigetti

|Aspen-8

| Superconducting

|

|99.22 (Single-qubit gates)

94.34 (Two-qubit gates)

|31

|{{date table sorting|2020-05-05}}

|

Rigetti

|Aspen-9

| Superconducting

|

|99.39 (Single-qubit gates)

94.28 (Two-qubit gates)

|32

|{{date table sorting|2021-02-06}}

|

Rigetti

|Aspen-10

| Superconducting

|

|99.37 (Single-qubit gates)

94.66 (Two-qubit gates)

|32

|{{date table sorting|2021-11-04}}

|

Rigetti

|Aspen-11

| Superconducting

|Octagonal{{Cite journal |last1=Pelofske |first1=Elijah |last2=Bärtschi |first2=Andreas |last3=Eidenbenz |first3=Stephan |date=2022 |title=Quantum Volume in Practice: What Users Can Expect from NISQ Devices |journal=IEEE Transactions on Quantum Engineering |volume=3 |pages=1–19 |doi=10.1109/TQE.2022.3184764 |arxiv=2203.03816 |s2cid=247315182 |issn=2689-1808}}

|99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY)

|40

|{{date table sorting|2021-12-15}}

Rigetti

|Aspen-M-1

|Superconducting transmon

|Octagonal

|99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY)

|80

|{{date table sorting|2022-02-15}}

|8

Rigetti

|Aspen-M-2

|Superconducting transmon

|

|99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY)

|80

|{{date table sorting|2022-08-01}}

|

RigettiAspen-M-3Superconducting transmon{{N/A}}99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY)80{{cite web |url= https://qcs.rigetti.com/qpus |title=Aspen-M-3 Quantum Processor|accessdate=2023-02-20}}{{date table sorting|2022-12-2}}

|

RigettiAnkaa-2Superconducting transmon{{N/A}}98 (Two-qubit gates)84{{Cite press release |last=Rigetti & Company LLC |date=2024-01-04 |title=Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs |url=https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html |access-date=2024-01-23 |website=GlobeNewswire News Room |language=en}}{{date table sorting|2023-12-20}}

|

RIKEN

| RIKEN{{Cite web |title=Japan's first homemade quantum computer goes online |url=https://www.riken.jp/en/news_pubs/news/2023/20230921_3/index.html |access-date=2024-01-25 |website=www.riken.jp |language=en}}

Superconducting{{N/A}}{{N/A}}53 effective (64 total){{Cite web |title=Japanese joint research group launches quantum computing cloud service |url=https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0324-01.html |access-date=2024-01-25 |website=Fujitsu Global |language=en}}{{Cite web |title=RIKEN and Fujitsu develop 64-qubit quantum computer |url=https://www.riken.jp/en/news_pubs/news/2023/20231005_2/index.html |access-date=2024-01-25 |website=www.riken.jp |language=en}}

| {{date table sorting|2023-03-27}}

{{N/A}}
SaxonQ

| Princess

| Nitrogen-vacancy center

|

|

| 4{{Cite web|title=All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ|url=https://qci.dlr.de/en/all-tests-passed-dlr-qci-accepts-4-qubit-demonstrator-sq-rt-with-princess-qpu-from-saxonq/|access-date=16 Jul 2024}}

| {{date table sorting|2024-06-26}}

|

SpinQ

|Triangulum

| Nuclear magnetic resonance

|

|

| 3{{Cite web|title=Triangulum3 qubits desktop NMR quantum computer|url=https://www.spinquanta.com/products-solutions/Triangulum|access-date=24 Feb 2023|website=AQT}}

| {{date table sorting|2021-09}}

|

USTCJiuzhangPhotonics{{N/A}}{{N/A}}76{{Cite journal|last=Ball|first=Philip|date=2020-12-03|title=Physicists in China challenge Google's 'quantum advantage'|journal=Nature|language=en|volume=588|issue=7838|pages=380|doi=10.1038/d41586-020-03434-7|pmid=33273711|bibcode=2020Natur.588..380B|doi-access=free}}{{Cite web |last=Letzter |first=Rafi – Staff Writer 07 |date=7 December 2020 |title=China claims fastest quantum computer in the world |url=https://www.livescience.com/china-quantum-supremacy.html |access-date=2020-12-19 |website=livescience.com |language=en}}{{date table sorting|2020}}

|

USTC

| Zuchongzhi

Superconducting{{N/A}}{{N/A}}62{{Cite journal|last=Ball|first=Philip|date=2020-12-03|title=Strong Quantum Computational Advantage Using a Superconducting Quantum Processor|journal=Physical Review Letters|volume=127|issue=18|page=180501 |doi=10.1103/PhysRevLett.127.180501|pmid=34767433 |arxiv=2106.14734 |bibcode=2021PhRvL.127r0501W |s2cid=235658633 }}

| {{date table sorting|2020}}

|

USTC

|Zuchongzhi 2.1

|Superconducting

|lattice{{cite journal | arxiv=2109.03494 | last1=Zhu | first1=Qingling | last2=Cao | first2=Sirui | last3=Chen | first3=Fusheng | last4=Chen | first4=Ming-Cheng | last5=Chen | first5=Xiawei | last6=Chung | first6=Tung-Hsun | last7=Deng | first7=Hui | last8=Du | first8=Yajie | last9=Fan | first9=Daojin | last10=Gong | first10=Ming | last11=Guo | first11=Cheng | last12=Guo | first12=Chu | last13=Guo | first13=Shaojun | last14=Han | first14=Lianchen | last15=Hong | first15=Linyin | last16=Huang | first16=He-Liang | last17=Huo | first17=Yong-Heng | last18=Li | first18=Liping | last19=Li | first19=Na | last20=Li | first20=Shaowei | last21=Li | first21=Yuan | last22=Liang | first22=Futian | last23=Lin | first23=Chun | last24=Lin | first24=Jin | last25=Qian | first25=Haoran | last26=Qiao | first26=Dan | last27=Rong | first27=Hao | last28=Su | first28=Hong | last29=Sun | first29=Lihua | last30=Wang | first30=Liangyuan | title=Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling | journal=Science Bulletin | year=2021 | volume=67 | issue=3 | pages=240–245 | doi=10.1016/j.scib.2021.10.017 | pmid=36546072 | s2cid=237442167 | display-authors=1 }}

|99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout)

|66{{Cite journal |last1=Wu |first1=Yulin |last2=Bao |first2=Wan-Su |last3=Cao |first3=Sirui |last4=Chen |first4=Fusheng |last5=Chen |first5=Ming-Cheng |last6=Chen |first6=Xiawei |last7=Chung |first7=Tung-Hsun |last8=Deng |first8=Hui |last9=Du |first9=Yajie |last10=Fan |first10=Daojin |last11=Gong |first11=Ming |last12=Guo |first12=Cheng |last13=Guo |first13=Chu |last14=Guo |first14=Shaojun |last15=Han |first15=Lianchen |date=2021-10-25 |title=Strong Quantum Computational Advantage Using a Superconducting Quantum Processor |url=https://link.aps.org/doi/10.1103/PhysRevLett.127.180501 |journal=Physical Review Letters |language=en |volume=127 |issue=18 |page=180501 |doi=10.1103/PhysRevLett.127.180501 |pmid=34767433 |arxiv=2106.14734 |bibcode=2021PhRvL.127r0501W |s2cid=235658633 |issn=0031-9007}}

|{{date table sorting|2021}}

|

USTC

|Zuchongzhi 3.0{{Cite journal |last1=Gao |first1=Dongxin |last2=Fan |first2=Daojin |last3=Zha |first3=Chen |last4=Bei |first4=Jiahao |last5=Cai |first5=Guoqing |last6=Cai |first6=Jianbing |last7=Cao |first7=Sirui |last8=Zeng |first8=Xiangdong |last9=Chen |first9=Fusheng |last10=Chen |first10=Jiang |last11=Chen |first11=Kefu |last12=Chen |first12=Xiawei |last13=Chen |first13=Xiqing |last14=Chen |first14=Zhe |last15=Chen |first15=Zhiyuan |date=2025 |title=Establishing a New Benchmark in Quantum Computational Advantage with 105-qubit Zuchongzhi 3.0 Processor |journal=Quantum Physics |volume=134 |issue=9 |page=090601 |doi=10.1103/PhysRevLett.134.090601 |pmid=40131086 |arxiv=2412.11924 |bibcode=2025PhRvL.134i0601G }}

|Superconducting transmon

|15 x 7

|99.90 (Single-qubit gates) 99.62 (Two-qubit gates) 99.18 (Readout)

|105

|December 16, 2024

|

Xanadu

|Borealis{{Cite journal |last1=Madsen |first1=Lars S. |last2=Laudenbach |first2=Fabian |last3=Askarani |first3=Mohsen Falamarzi |last4=Rortais |first4=Fabien |last5=Vincent |first5=Trevor |last6=Bulmer |first6=Jacob F. F. |last7=Miatto |first7=Filippo M. |last8=Neuhaus |first8=Leonhard |last9=Helt |first9=Lukas G. |last10=Collins |first10=Matthew J. |last11=Lita |first11=Adriana E. |date=June 2022 |title=Quantum computational advantage with a programmable photonic processor |journal=Nature |language=en |volume=606 |issue=7912 |pages=75–81 |doi=10.1038/s41586-022-04725-x |pmid=35650354 |pmc=9159949 |bibcode=2022Natur.606...75M |s2cid=249276257 |issn=1476-4687}}

|Photonics (Continuous-variable)

| {{N/A}}

| {{N/A}}

|216

|{{date table sorting|2022}}

|

Xanadu

|X8 {{Cite web|title=A new kind of quantum|url=https://spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum|access-date=2021-01-09|website=spie.org}}

|Photonics (Continuous-variable)

| {{N/A}}

| {{N/A}}

|8

| {{date table sorting|2020}}

|

Xanadu

|X12

|Photonics (Continuous-variable)

| {{N/A}}

| {{N/A}}

|12

| {{date table sorting|2020}}

|

Xanadu

|X24

|Photonics (Continuous-variable)

| {{N/A}}

| {{N/A}}

|24

| {{date table sorting|2020}}

|

Annealing quantum processors

These QPUs are based on quantum annealing, not to be confused with digital annealing.{{Cite web |title=Digital Annealer – Quantum Computing Technology |url=https://www.fujitsu.com/global/services/business-services/digital-annealer/ |access-date=12 April 2023 |website=Fujitsu}}

class="wikitable sortable"
ManufacturerName/Codename

/Designation

! Architecture

LayoutFidelity (%)QubitsRelease date
D-WaveD-Wave One (Rainier)SuperconductingC4 = Chimera(4,4,4){{Cite arXiv |last1=Cai|first1=Jun|last2=Macready|first2=Bill|last3=Roy|first3=Aidan|title=A practical heuristic for finding graph minors|date=10 Jun 2014|eprint=1406.2741|class=quant-ph}} = 4×4 K4,4{{N/A}}128{{date table sorting|2011-05-11}}
D-WaveD-Wave TwoSuperconductingC8 = Chimera(8,8,4) = 8×8 K4,4{{N/A}}512{{date table sorting|2013}}
D-WaveD-Wave 2XSuperconductingC12 = Chimera(12,12,4) = 12×12 K4,4{{N/A}}1152{{date table sorting|2015}}
D-WaveD-Wave 2000QSuperconductingC16 = Chimera(16,16,4) = 16×16 K4,4{{N/A}}2048{{date table sorting|2017}}
D-WaveD-Wave AdvantageSuperconductingPegasus P16{{Cite arXiv |last1=Boothby|first1=Kelly|last2=Bunyk|first2=Paul|last3=Raymond|first3=Jack|last4=Roy|first4=Aidan|title=Next-Generation Topology of D-Wave Quantum Processors|date=29 Feb 2020|eprint=2003.00133|class=quant-ph}}{{N/A}}5760{{date table sorting|2020}}
D-Wave

|D-Wave Advantage 2{{cite web | url=https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-1-200-qubit-advantage2-prototype-in-new-lower-noise-fabrication-stack-demonstrating-20x-faster-time-to-solution-on-important-class-of-hard-optimization-problems/ | title=D-Wave Announces 1,200+ Qubit Advantage2™ Prototype in New, Lower-Noise Fabrication Stack, Demonstrating 20x Faster Time-to-Solution on Important Class of Hard Optimization Problems }}{{cite web | url=https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-availability-of-1-200-qubit-advantage2-prototype/ | title=D-Wave Announces Availability of 1,200+ Qubit Advantage2™ Prototype in the Leap™ Quantum Cloud Service, Making its Most Performant System Available to Customers Today }}{{Cite web |date=November 18, 2024 |title=D-Wave Clarity Roadmap : 2023-2024 |url=https://www.dwavesys.com/media/xvjpraig/clarity-roadmap_digital_v2.pdf |access-date=November 18, 2024 |website=dwavesys.com |quote=Advantage 2™ quantum system will incorporate a new qubit design that enables 20-way connectivity in a new topology. The Advantage 2 QPU will contain 7000+ qubits and make use of the latest improvements in quantum coherence in a multi-layer fabrication stack, further harnessing the quantum mechanical power of the system for finding better solutions, faster.}}{{Cite web |last1=McGeoch |first1=Catherine |last2=Farre |first2=Pau |last3=Boothby |first3=Kelly |date=June 9, 2022 |title=The D-wave Advantage2 Prototype : Technical Report |url=https://www.dwavesys.com/media/eixhdtpa/14-1063a-a_the_d-wave_advantage2_prototype-4.pdf |access-date=November 11, 2024 |website=Dwavesys.com}}

|Superconducting

|Zephyr Z15{{cite web | url=https://www.dwavesys.com/company/newsroom/press-release/ahead-of-the-game-d-wave-delivers-prototype-of-next-generation-advantage2-annealing-quantum-computer/ | title=Ahead of the Game: D-Wave Delivers Prototype of Next-Generation Advantage2 Annealing Quantum Computer }}

| {{N/A}}

|7440https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf

|2024

Analog quantum processors

These QPUs are based on analog Hamiltonian simulation.

class="wikitable sortable"
ManufacturerName/Codename/DesignationArchitectureLayoutFidelity (%)QubitsRelease date
QuEraAquilaNeutral atoms{{N/A}}{{N/A}}256{{Cite news |last=Lee |first=Jane |date=2 November 2022 |title=Boston-based quantum computer QuEra joins Amazon's cloud for public access |agency=Reuters}}{{date table sorting|2022-11}}

See also

References

{{reflist|30em}}{{Quantum information}}

Category:Quantum computing

quantum processors