Table of Gaussian integer factorizations

{{Short description|Mathematical table}}

A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite. The article is a table of Gaussian Integers {{math|x + iy}} followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes.

Note that there are rational primes which are not Gaussian primes. A simple example is the rational prime 5, which is factored as {{math|5{{=}}(2+i)(2−i)}} in the table, and therefore not a Gaussian prime.

Conventions

The second column of the table contains only integers in the first quadrant, which means the real part x is positive and the imaginary part y is non-negative. The table might have been further reduced to the integers in the first octant of the

complex plane using the symmetry

{{math|y + ix {{=}}i (xiy)}}.

The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry {{math|4+2i {{=}} −i(1+i)2(2+i)}}, for example, could also be written as {{math|4+2i{{=}} (1+i)2(1−2i)}}. The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.

The entries are sorted according to increasing norm {{math|x2 + y2}} {{OEIS|A001481}}. The table is complete up to the maximum norm at the end of the table in the sense that

each composite or prime in the first quadrant appears in the second column.

Gaussian primes occur only for a subset of norms, detailed in sequence {{OEIS2C|A055025}}. This here is a composition of sequences {{OEIS2C|A103431}} and {{OEIS2C|A103432}}.

Factorizations

{{table TOC|allowtoc=yes|title=Norm|1–250|251–500|501–750|751–1000}}

id="1–250" class="wikitable sortable" style="float:left; margin-right:1em"

|+ Norm 1–250

Norm || Integer || Factorization
2{{math| 1+i}}(p)
4{{math| 2}}{{math| −i·(1+i)2}}
5{{math| 2+i}}
{{math| 1+2i}}
(p)
(p)
8{{math| 2+2i}}{{math| −i·(1+i)3}}
9{{math| 3}}(p)
10{{math| 1+3i}}
{{math| 3+i}}
{{math| (1+i)·(2+i)}}
{{math| (1+i)·(2−i)}}
13{{math| 3+2i}}
{{math| 2+3i}}
(p)
(p)
16{{math| 4}}{{math| −(1+i)4}}
17{{math| 1+4i}}
{{math| 4+i}}
(p)
(p)
18{{math| 3+3i}}{{math| (1+i)·3}}
20{{math| 2+4i}}
{{math| 4+2i}}
{{math| (1+i)2·(2−i)}}
{{math| −i·(1+i)2·(2+i)}}
25{{math| 3+4i}}
{{math| 4+3i}}
{{math| 5}}
{{math| (2+i)2}}
{{math| i·(2−i)2}}
{{math| (2+i)·(2−i)}}
26{{math| 1+5i}}
{{math| 5+i}}
{{math| (1+i)·(3+2i)}}
{{math| (1+i)·(3−2i)}}
29{{math| 2+5i}}
{{math| 5+2i}}
(p)
(p)
32{{math| 4+4i}}{{math| −(1+i)5}}
34{{math| 3+5i}}
{{math| 5+3i}}
{{math| (1+i)·(4+i)}}
{{math| (1+i)·(4−i)}}
36{{math| 6}}{{math| −i·(1+i)2·3}}
37{{math| 1+6i}}
{{math| 6+i}}
(p)
(p)
40{{math| 2+6i}}
{{math| 6+2i}}
{{math| −i·(1+i)3·(2+i)}}
{{math| −i·(1+i)3·(2−i)}}
41{{math| 4+5i}}
{{math| 5+4i}}
(p)
(p)
45{{math| 3+6i}}
{{math| 6+3i}}
{{math| i·(2−i)·3}}
{{math| (2+i)·3}}
49{{math| 7}}(p)
50{{math| 1+7i}}
{{math| 5+5i}}
{{math| 7+i}}
{{math| i·(1+i)·(2−i)2}}
{{math| (1+i)·(2+i)·(2−i)}}
{{math| −i·(1+i)·(2+i)2}}
52{{math| 4+6i}}
{{math| 6+4i}}
{{math| (1+i)2·(3−2i)}}
{{math| −i·(1+i)2·(3+2i)}}
53{{math| 2+7i}}
{{math| 7+2i}}
(p)
(p)
58{{math| 3+7i}}
{{math| 7+3i}}
{{math| (1+i)·(5+2i)}}
{{math| (1+i)·(5−2i)}}
61{{math| 5+6i}}
{{math| 6+5i}}
(p)
(p)
64{{math| 8}}{{math| i·(1+i)6}}
65{{math| 1+8i}}
{{math| 4+7i}}
{{math| 7+4i}}
{{math| 8+i}}
{{math| i·(2+i)·(3−2i)}}
{{math| (2+i)·(3+2i)}}
{{math| i·(2−i)·(3−2i)}}
{{math| (2−i)·(3+2i)}}
68{{math| 2+8i}}
{{math| 8+2i}}
{{math| (1+i)2·(4−i)}}
{{math| −i·(1+i)2·(4+i)}}
72{{math| 6+6i}}{{math| −i·(1+i)3·3}}
73{{math| 3+8i}}
{{math| 8+3i}}
(p)
(p)
74{{math| 5+7i}}
{{math| 7+5i}}
{{math| (1+i)·(6+i)}}
{{math| (1+i)·(6−i)}}
80{{math| 4+8i}}
{{math| 8+4i}}
{{math| −i·(1+i)4·(2−i)}}
{{math| −(1+i)4·(2+i)}}
81{{math| 9}}{{math| 32}}
82{{math| 1+9i}}
{{math| 9+i}}
{{math| (1+i)·(5+4i)}}
{{math| (1+i)·(5−4i)}}
85{{math| 2+9i}}
{{math| 6+7i}}
{{math| 7+6i}}
{{math| 9+2i}}
{{math| i·(2−i)·(4+i)}}
{{math| i·(2−i)·(4−i)}}
{{math| (2+i)·(4+i)}}
{{math| (2+i)·(4−i)}}
89{{math| 5+8i}}
{{math| 8+5i}}
(p)
(p)
90{{math| 3+9i}}
{{math| 9+3i}}
{{math| (1+i)·(2+i)·3}}
{{math| (1+i)·(2−i)·3}}
97{{math| 4+9i}}
{{math| 9+4i}}
(p)
(p)
98{{math| 7+7i}}{{math| (1+i)·7}}
100{{math| 6+8i}}
{{math| 8+6i}}
{{math| 10}}
{{math| −i·(1+i)2·(2+i)2}}
{{math| (1+i)2·(2−i)2}}
{{math| −i·(1+i)2·(2+i)·(2−i)}}
101{{math| 1+10i}}
{{math| 10+i}}
(p)
(p)
104{{math| 2+10i}}
{{math| 10+2i}}
{{math| −i·(1+i)3·(3+2i)}}
{{math| −i·(1+i)3·(3−2i)}}
106{{math| 5+9i}}
{{math| 9+5i}}
{{math| (1+i)·(7+2i)}}
{{math| (1+i)·(7−2i)}}
109{{math| 3+10i}}
{{math| 10+3i}}
(p)
(p)
113{{math| 7+8i}}
{{math| 8+7i}}
(p)
(p)
116{{math| 4+10i}}
{{math| 10+4i}}
{{math| (1+i)2·(5−2i)}}
{{math| −i·(1+i)2·(5+2i)}}
117{{math| 6+9i}}
{{math| 9+6i}}
{{math| i·3·(3−2i)}}
{{math| 3·(3+2i)}}
121{{math| 11}}(p)
122{{math| 1+11i}}
{{math| 11+i}}
{{math| (1+i)·(6+5i)}}
{{math| (1+i)·(6−5i)}}
125{{math| 2+11i}}
{{math| 5+10i}}
{{math| 10+5i}}
{{math| 11+2i}}
{{math| (2+i)3}}
{{math| i·(2+i)·(2−i)2}}
{{math| (2+i)2·(2−i)}}
{{math| i·(2−i)3}}
128{{math| 8+8i}}{{math| i·(1+i)7}}
130{{math| 3+11i}}
{{math| 7+9i}}
{{math| 9+7i}}
{{math| 11+3i}}
{{math| i·(1+i)·(2−i)·(3−2i)}}
{{math| (1+i)·(2−i)·(3+2i)}}
{{math| (1+i)·(2+i)·(3−2i)}}
{{math| −i·(1+i)·(2+i)·(3+2i)}}
136{{math| 6+10i}}
{{math| 10+6i}}
{{math| −i·(1+i)3·(4+i)}}
{{math| −i·(1+i)3·(4−i)}}
137{{math| 4+11i}}
{{math| 11+4i}}
(p)
(p)
144{{math| 12}}{{math| −(1+i)4·3}}
145{{math| 1+12i}}
{{math| 8+9i}}
{{math| 9+8i}}
{{math| 12+i}}
{{math| i·(2−i)·(5+2i)}}
{{math| (2+i)·(5+2i)}}
{{math| i·(2−i)·(5−2i)}}
{{math| (2+i)·(5−2i)}}
146{{math| 5+11i}}
{{math| 11+5i}}
{{math| (1+i)·(8+3i)}}
{{math| (1+i)·(8−3i)}}
148{{math| 2+12i}}
{{math| 12+2i}}
{{math| (1+i)2·(6−i)}}
{{math| −i·(1+i)2·(6+i)}}
149{{math| 7+10i}}
{{math| 10+7i}}
(p)
(p)
153{{math| 3+12i}}
{{math| 12+3i}}
{{math| i·3·(4−i)}}
{{math| 3·(4+i)}}
157{{math| 6+11i}}
{{math| 11+6i}}
(p)
(p)
160{{math| 4+12i}}
{{math| 12+4i}}
{{math| −(1+i)5·(2+i)}}
{{math| −(1+i)5·(2−i)}}
162{{math| 9+9i}}{{math| (1+i)·32}}
164{{math| 8+10i}}
{{math| 10+8i}}
{{math| (1+i)2·(5−4i)}}
{{math| −i·(1+i)2·(5+4i)}}
169{{math| 5+12i}}
{{math| 12+5i}}
{{math| 13}}
{{math| (3+2i)2}}
{{math| i·(3−2i)2}}
{{math| (3+2i)·(3−2i)}}
170{{math| 1+13i}}
{{math| 7+11i}}
{{math| 11+7i}}
{{math| 13+i}}
{{math| (1+i)·(2+i)·(4+i)}}
{{math| (1+i)·(2+i)·(4−i)}}
{{math| (1+i)·(2−i)·(4+i)}}
{{math| (1+i)·(2−i)·(4−i)}}
173{{math| 2+13i}}
{{math| 13+2i}}
(p)
(p)
178{{math| 3+13i}}
{{math| 13+3i}}
{{math| (1+i)·(8+5i)}}
{{math| (1+i)·(8−5i)}}
180{{math| 6+12i}}
{{math| 12+6i}}
{{math| (1+i)2·(2−i)·3}}
{{math| −i·(1+i)2·(2+i)·3}}
181{{math| 9+10i}}
{{math| 10+9i}}
(p)
(p)
185{{math| 4+13i}}
{{math| 8+11i}}
{{math| 11+8i}}
{{math| 13+4i}}
{{math| i·(2−i)·(6+i)}}
{{math| i·(2−i)·(6−i)}}
{{math| (2+i)·(6+i)}}
{{math| (2+i)·(6−i)}}
193{{math| 7+12i}}
{{math| 12+7i}}
(p)
(p)
194{{math| 5+13i}}
{{math| 13+5i}}
{{math| (1+i)·(9+4i)}}
{{math| (1+i)·(9−4i)}}
196{{math| 14}}{{math| −i·(1+i)2·7}}
197{{math| 1+14i}}
{{math| 14+i}}
(p)
(p)
200{{math| 2+14i}}
{{math| 10+10i}}
{{math| 14+2i}}
{{math| (1+i)3·(2−i)2}}
{{math| −i·(1+i)3·(2+i)·(2−i)}}
{{math| −(1+i)3·(2+i)2}}
202{{math| 9+11i}}
{{math| 11+9i}}
{{math| (1+i)·(10+i)}}
{{math| (1+i)·(10−i)}}
205{{math| 3+14i}}
{{math| 6+13i}}
{{math| 13+6i}}
{{math| 14+3i}}
{{math| i·(2+i)·(5−4i)}}
{{math| (2+i)·(5+4i)}}
{{math| i·(2−i)·(5−4i)}}
{{math| (2−i)·(5+4i)}}
208{{math| 8+12i}}
{{math| 12+8i}}
{{math| −i·(1+i)4·(3−2i)}}
{{math| −(1+i)4·(3+2i)}}
212{{math| 4+14i}}
{{math| 14+4i}}
{{math| (1+i)2·(7−2i)}}
{{math| −i·(1+i)2·(7+2i)}}
218{{math| 7+13i}}
{{math| 13+7i}}
{{math| (1+i)·(10+3i)}}
{{math| (1+i)·(10−3i)}}
221{{math| 5+14i}}
{{math| 10+11i}}
{{math| 11+10i}}
{{math| 14+5i}}
{{math| i·(3−2i)·(4+i)}}
{{math| (3+2i)·(4+i)}}
{{math| i·(3−2i)·(4−i)}}
{{math| (3+2i)·(4−i)}}
225{{math| 9+12i}}
{{math| 12+9i}}
{{math| 15}}
{{math| (2+i)2·3}}
{{math| i·(2−i)2·3}}
{{math| (2+i)·(2−i)·3}}
226{{math| 1+15i}}
{{math| 15+i}}
{{math| (1+i)·(8+7i)}}
{{math| (1+i)·(8−7i)}}
229{{math| 2+15i}}
{{math| 15+2i}}
(p)
(p)
232{{math| 6+14i}}
{{math| 14+6i}}
{{math| −i·(1+i)3·(5+2i)}}
{{math| −i·(1+i)3·(5−2i)}}
233{{math| 8+13i}}
{{math| 13+8i}}
(p)
(p)
234{{math| 3+15i}}
{{math| 15+3i}}
{{math| (1+i)·3·(3+2i)}}
{{math| (1+i)·3·(3−2i)}}
241{{math| 4+15i}}
{{math| 15+4i}}
(p)
(p)
242{{math| 11+11i}}{{math| (1+i)·11}}
244{{math| 10+12i}}
{{math| 12+10i}}
{{math| (1+i)2·(6−5i)}}
{{math| −i·(1+i)2·(6+5i)}}
245{{math| 7+14i}}
{{math| 14+7i}}
{{math| i·(2−i)·7}}
{{math| (2+i)·7}}
250{{math| 5+15i}}
{{math| 9+13i}}
{{math| 13+9i}}
{{math| 15+5i}}
{{math| (1+i)·(2+i)2·(2−i)}}
{{math| i·(1+i)·(2−i)3}}
{{math| −i·(1+i)·(2+i)3}}
{{math| (1+i)·(2+i)·(2−i)2}}

id="251–500" class="wikitable sortable" style="float:left; margin-right:1em"

|+ Norm 251–500

Norm || Integer || Factorization
256{{math| 16}}{{math| (1+i)8}}
257{{math| 1+16i}}
{{math| 16+i}}
(p)
(p)
260{{math| 2+16i}}
{{math| 8+14i}}
{{math| 14+8i}}
{{math| 16+2i}}
{{math| (1+i)2·(2+i)·(3−2i)}}
{{math| −i·(1+i)2·(2+i)·(3+2i)}}
{{math| (1+i)2·(2−i)·(3−2i)}}
{{math| −i·(1+i)2·(2−i)·(3+2i)}}
261{{math| 6+15i}}
{{math| 15+6i}}
{{math| i·3·(5−2i)}}
{{math| 3·(5+2i)}}
265{{math| 3+16i}}
{{math| 11+12i}}
{{math| 12+11i}}
{{math| 16+3i}}
{{math| i·(2−i)·(7+2i)}}
{{math| i·(2−i)·(7−2i)}}
{{math| (2+i)·(7+2i)}}
{{math| (2+i)·(7−2i)}}
269{{math| 10+13i}}
{{math| 13+10i}}
(p)
(p)
272{{math| 4+16i}}
{{math| 16+4i}}
{{math| −i·(1+i)4·(4−i)}}
{{math| −(1+i)4·(4+i)}}
274{{math| 7+15i}}
{{math| 15+7i}}
{{math| (1+i)·(11+4i)}}
{{math| (1+i)·(11−4i)}}
277{{math| 9+14i}}
{{math| 14+9i}}
(p)
(p)
281{{math| 5+16i}}
{{math| 16+5i}}
(p)
(p)
288{{math| 12+12i}}{{math| −(1+i)5·3}}
289{{math| 8+15i}}
{{math| 15+8i}}
{{math| 17}}
{{math| i·(4−i)2}}
{{math| (4+i)2}}
{{math| (4+i)·(4−i)}}
290{{math| 1+17i}}
{{math| 11+13i}}
{{math| 13+11i}}
{{math| 17+i}}
{{math| i·(1+i)·(2−i)·(5−2i)}}
{{math| (1+i)·(2+i)·(5−2i)}}
{{math| (1+i)·(2−i)·(5+2i)}}
{{math| −i·(1+i)·(2+i)·(5+2i)}}
292{{math| 6+16i}}
{{math| 16+6i}}
{{math| (1+i)2·(8−3i)}}
{{math| −i·(1+i)2·(8+3i)}}
293{{math| 2+17i}}
{{math| 17+2i}}
(p)
(p)
296{{math| 10+14i}}
{{math| 14+10i}}
{{math| −i·(1+i)3·(6+i)}}
{{math| −i·(1+i)3·(6−i)}}
298{{math| 3+17i}}
{{math| 17+3i}}
{{math| (1+i)·(10+7i)}}
{{math| (1+i)·(10−7i)}}
305{{math| 4+17i}}
{{math| 7+16i}}
{{math| 16+7i}}
{{math| 17+4i}}
{{math| i·(2+i)·(6−5i)}}
{{math| (2+i)·(6+5i)}}
{{math| i·(2−i)·(6−5i)}}
{{math| (2−i)·(6+5i)}}
306{{math| 9+15i}}
{{math| 15+9i}}
{{math| (1+i)·3·(4+i)}}
{{math| (1+i)·3·(4−i)}}
313{{math| 12+13i}}
{{math| 13+12i}}
(p)
(p)
314{{math| 5+17i}}
{{math| 17+5i}}
{{math| (1+i)·(11+6i)}}
{{math| (1+i)·(11−6i)}}
317{{math| 11+14i}}
{{math| 14+11i}}
(p)
(p)
320{{math| 8+16i}}
{{math| 16+8i}}
{{math| −(1+i)6·(2−i)}}
{{math| i·(1+i)6·(2+i)}}
324{{math| 18}}{{math| −i·(1+i)2·32}}
325{{math| 1+18i}}
{{math| 6+17i}}
{{math| 10+15i}}
{{math| 15+10i}}
{{math| 17+6i}}
{{math| 18+i}}
{{math| (2+i)2·(3+2i)}}
{{math| i·(2−i)2·(3+2i)}}
{{math| i·(2+i)·(2−i)·(3−2i)}}
{{math| (2+i)·(2−i)·(3+2i)}}
{{math| (2+i)2·(3−2i)}}
{{math| i·(2−i)2·(3−2i)}}
328{{math| 2+18i}}
{{math| 18+2i}}
{{math| −i·(1+i)3·(5+4i)}}
{{math| −i·(1+i)3·(5−4i)}}
333{{math| 3+18i}}
{{math| 18+3i}}
{{math| i·3·(6−i)}}
{{math| 3·(6+i)}}
337{{math| 9+16i}}
{{math| 16+9i}}
(p)
(p)
338{{math| 7+17i}}
{{math| 13+13i}}
{{math| 17+7i}}
{{math| i·(1+i)·(3−2i)2}}
{{math| (1+i)·(3+2i)·(3−2i)}}
{{math| −i·(1+i)·(3+2i)2}}
340{{math| 4+18i}}
{{math| 12+14i}}
{{math| 14+12i}}
{{math| 18+4i}}
{{math| (1+i)2·(2−i)·(4+i)}}
{{math| (1+i)2·(2−i)·(4−i)}}
{{math| −i·(1+i)2·(2+i)·(4+i)}}
{{math| −i·(1+i)2·(2+i)·(4−i)}}
346{{math| 11+15i}}
{{math| 15+11i}}
{{math| (1+i)·(13+2i)}}
{{math| (1+i)·(13−2i)}}
349{{math| 5+18i}}
{{math| 18+5i}}
(p)
(p)
353{{math| 8+17i}}
{{math| 17+8i}}
(p)
(p)
356{{math| 10+16i}}
{{math| 16+10i}}
{{math| (1+i)2·(8−5i)}}
{{math| −i·(1+i)2·(8+5i)}}
360{{math| 6+18i}}
{{math| 18+6i}}
{{math| −i·(1+i)3·(2+i)·3}}
{{math| −i·(1+i)3·(2−i)·3}}
361{{math| 19}}(p)
362{{math| 1+19i}}
{{math| 19+i}}
{{math| (1+i)·(10+9i)}}
{{math| (1+i)·(10−9i)}}
365{{math| 2+19i}}
{{math| 13+14i}}
{{math| 14+13i}}
{{math| 19+2i}}
{{math| i·(2−i)·(8+3i)}}
{{math| (2+i)·(8+3i)}}
{{math| i·(2−i)·(8−3i)}}
{{math| (2+i)·(8−3i)}}
369{{math| 12+15i}}
{{math| 15+12i}}
{{math| i·3·(5−4i)}}
{{math| 3·(5+4i)}}
370{{math| 3+19i}}
{{math| 9+17i}}
{{math| 17+9i}}
{{math| 19+3i}}
{{math| (1+i)·(2+i)·(6+i)}}
{{math| (1+i)·(2+i)·(6−i)}}
{{math| (1+i)·(2−i)·(6+i)}}
{{math| (1+i)·(2−i)·(6−i)}}
373{{math| 7+18i}}
{{math| 18+7i}}
(p)
(p)
377{{math| 4+19i}}
{{math| 11+16i}}
{{math| 16+11i}}
{{math| 19+4i}}
{{math| i·(3−2i)·(5+2i)}}
{{math| (3+2i)·(5+2i)}}
{{math| i·(3−2i)·(5−2i)}}
{{math| (3+2i)·(5−2i)}}
386{{math| 5+19i}}
{{math| 19+5i}}
{{math| (1+i)·(12+7i)}}
{{math| (1+i)·(12−7i)}}
388{{math| 8+18i}}
{{math| 18+8i}}
{{math| (1+i)2·(9−4i)}}
{{math| −i·(1+i)2·(9+4i)}}
389{{math| 10+17i}}
{{math| 17+10i}}
(p)
(p)
392{{math| 14+14i}}{{math| −i·(1+i)3·7}}
394{{math| 13+15i}}
{{math| 15+13i}}
{{math| (1+i)·(14+i)}}
{{math| (1+i)·(14−i)}}
397{{math| 6+19i}}
{{math| 19+6i}}
(p)
(p)
400{{math| 12+16i}}
{{math| 16+12i}}
{{math| 20}}
{{math| −(1+i)4·(2+i)2}}
{{math| −i·(1+i)4·(2−i)2}}
{{math| −(1+i)4·(2+i)·(2−i)}}
401{{math| 1+20i}}
{{math| 20+i}}
(p)
(p)
404{{math| 2+20i}}
{{math| 20+2i}}
{{math| (1+i)2·(10−i)}}
{{math| −i·(1+i)2·(10+i)}}
405{{math| 9+18i}}
{{math| 18+9i}}
{{math| i·(2−i)·32}}
{{math| (2+i)·32}}
409{{math| 3+20i}}
{{math| 20+3i}}
(p)
(p)
410{{math| 7+19i}}
{{math| 11+17i}}
{{math| 17+11i}}
{{math| 19+7i}}
{{math| i·(1+i)·(2−i)·(5−4i)}}
{{math| (1+i)·(2−i)·(5+4i)}}
{{math| (1+i)·(2+i)·(5−4i)}}
{{math| −i·(1+i)·(2+i)·(5+4i)}}
416{{math| 4+20i}}
{{math| 20+4i}}
{{math| −(1+i)5·(3+2i)}}
{{math| −(1+i)5·(3−2i)}}
421{{math| 14+15i}}
{{math| 15+14i}}
(p)
(p)
424{{math| 10+18i}}
{{math| 18+10i}}
{{math| −i·(1+i)3·(7+2i)}}
{{math| −i·(1+i)3·(7−2i)}}
425{{math| 5+20i}}
{{math| 8+19i}}
{{math| 13+16i}}
{{math| 16+13i}}
{{math| 19+8i}}
{{math| 20+5i}}
{{math| i·(2+i)·(2−i)·(4−i)}}
{{math| (2+i)2·(4+i)}}
{{math| i·(2−i)2·(4+i)}}
{{math| (2+i)2·(4−i)}}
{{math| i·(2−i)2·(4−i)}}
{{math| (2+i)·(2−i)·(4+i)}}
433{{math| 12+17i}}
{{math| 17+12i}}
(p)
(p)
436{{math| 6+20i}}
{{math| 20+6i}}
{{math| (1+i)2·(10−3i)}}
{{math| −i·(1+i)2·(10+3i)}}
441{{math| 21}}{{math| 3·7}}
442{{math| 1+21i}}
{{math| 9+19i}}
{{math| 19+9i}}
{{math| 21+i}}
{{math| i·(1+i)·(3−2i)·(4−i)}}
{{math| (1+i)·(3+2i)·(4−i)}}
{{math| (1+i)·(3−2i)·(4+i)}}
{{math| −i·(1+i)·(3+2i)·(4+i)}}
445{{math| 2+21i}}
{{math| 11+18i}}
{{math| 18+11i}}
{{math| 21+2i}}
{{math| i·(2+i)·(8−5i)}}
{{math| (2+i)·(8+5i)}}
{{math| i·(2−i)·(8−5i)}}
{{math| (2−i)·(8+5i)}}
449{{math| 7+20i}}
{{math| 20+7i}}
(p)
(p)
450{{math| 3+21i}}
{{math| 15+15i}}
{{math| 21+3i}}
{{math| i·(1+i)·(2−i)2·3}}
{{math| (1+i)·(2+i)·(2−i)·3}}
{{math| −i·(1+i)·(2+i)2·3}}
452{{math| 14+16i}}
{{math| 16+14i}}
{{math| (1+i)2·(8−7i)}}
{{math| −i·(1+i)2·(8+7i)}}
457{{math| 4+21i}}
{{math| 21+4i}}
(p)
(p)
458{{math| 13+17i}}
{{math| 17+13i}}
{{math| (1+i)·(15+2i)}}
{{math| (1+i)·(15−2i)}}
461{{math| 10+19i}}
{{math| 19+10i}}
(p)
(p)
464{{math| 8+20i}}
{{math| 20+8i}}
{{math| −i·(1+i)4·(5−2i)}}
{{math| −(1+i)4·(5+2i)}}
466{{math| 5+21i}}
{{math| 21+5i}}
{{math| (1+i)·(13+8i)}}
{{math| (1+i)·(13−8i)}}
468{{math| 12+18i}}
{{math| 18+12i}}
{{math| (1+i)2·3·(3−2i)}}
{{math| −i·(1+i)2·3·(3+2i)}}
477{{math| 6+21i}}
{{math| 21+6i}}
{{math| i·3·(7−2i)}}
{{math| 3·(7+2i)}}
481{{math| 9+20i}}
{{math| 15+16i}}
{{math| 16+15i}}
{{math| 20+9i}}
{{math| i·(3−2i)·(6+i)}}
{{math| i·(3−2i)·(6−i)}}
{{math| (3+2i)·(6+i)}}
{{math| (3+2i)·(6−i)}}
482{{math| 11+19i}}
{{math| 19+11i}}
{{math| (1+i)·(15+4i)}}
{{math| (1+i)·(15−4i)}}
484{{math| 22}}{{math| −i·(1+i)2·11}}
485{{math| 1+22i}}
{{math| 14+17i}}
{{math| 17+14i}}
{{math| 22+i}}
{{math| i·(2−i)·(9+4i)}}
{{math| (2+i)·(9+4i)}}
{{math| i·(2−i)·(9−4i)}}
{{math| (2+i)·(9−4i)}}
488{{math| 2+22i}}
{{math| 22+2i}}
{{math| −i·(1+i)3·(6+5i)}}
{{math| −i·(1+i)3·(6−5i)}}
490{{math| 7+21i}}
{{math| 21+7i}}
{{math| (1+i)·(2+i)·7}}
{{math| (1+i)·(2−i)·7}}
493{{math| 3+22i}}
{{math| 13+18i}}
{{math| 18+13i}}
{{math| 22+3i}}
{{math| i·(4+i)·(5−2i)}}
{{math| i·(4−i)·(5−2i)}}
{{math| (4+i)·(5+2i)}}
{{math| (4−i)·(5+2i)}}
500{{math| 4+22i}}
{{math| 10+20i}}
{{math| 20+10i}}
{{math| 22+4i}}
{{math| −i·(1+i)2·(2+i)3}}
{{math| (1+i)2·(2+i)·(2−i)2}}
{{math| −i·(1+i)2·(2+i)2·(2−i)}}
{{math| (1+i)2·(2−i)3}}

id="501–750" class="wikitable sortable" style="float:left; margin-right:1em"

|+ Norm 501–750

Norm || Integer || Factorization
505{{math| 8+21i}}
{{math| 12+19i}}
{{math| 19+12i}}
{{math| 21+8i}}
{{math| i·(2−i)·(10+i)}}
{{math| i·(2−i)·(10−i)}}
{{math| (2+i)·(10+i)}}
{{math| (2+i)·(10−i)}}
509{{math| 5+22i}}
{{math| 22+5i}}
(p)
(p)
512{{math| 16+16i}}{{math| (1+i)9}}
514{{math| 15+17i}}
{{math| 17+15i}}
{{math| (1+i)·(16+i)}}
{{math| (1+i)·(16−i)}}
520{{math| 6+22i}}
{{math| 14+18i}}
{{math| 18+14i}}
{{math| 22+6i}}
{{math| (1+i)3·(2−i)·(3−2i)}}
{{math| −i·(1+i)3·(2−i)·(3+2i)}}
{{math| −i·(1+i)3·(2+i)·(3−2i)}}
{{math| −(1+i)3·(2+i)·(3+2i)}}
521{{math| 11+20i}}
{{math| 20+11i}}
(p)
(p)
522{{math| 9+21i}}
{{math| 21+9i}}
{{math| (1+i)·3·(5+2i)}}
{{math| (1+i)·3·(5−2i)}}
529{{math| 23}}(p)
530{{math| 1+23i}}
{{math| 13+19i}}
{{math| 19+13i}}
{{math| 23+i}}
{{math| (1+i)·(2+i)·(7+2i)}}
{{math| (1+i)·(2+i)·(7−2i)}}
{{math| (1+i)·(2−i)·(7+2i)}}
{{math| (1+i)·(2−i)·(7−2i)}}
533{{math| 2+23i}}
{{math| 7+22i}}
{{math| 22+7i}}
{{math| 23+2i}}
{{math| i·(3+2i)·(5−4i)}}
{{math| (3+2i)·(5+4i)}}
{{math| i·(3−2i)·(5−4i)}}
{{math| (3−2i)·(5+4i)}}
538{{math| 3+23i}}
{{math| 23+3i}}
{{math| (1+i)·(13+10i)}}
{{math| (1+i)·(13−10i)}}
541{{math| 10+21i}}
{{math| 21+10i}}
(p)
(p)
544{{math| 12+20i}}
{{math| 20+12i}}
{{math| −(1+i)5·(4+i)}}
{{math| −(1+i)5·(4−i)}}
545{{math| 4+23i}}
{{math| 16+17i}}
{{math| 17+16i}}
{{math| 23+4i}}
{{math| i·(2−i)·(10+3i)}}
{{math| i·(2−i)·(10−3i)}}
{{math| (2+i)·(10+3i)}}
{{math| (2+i)·(10−3i)}}
548{{math| 8+22i}}
{{math| 22+8i}}
{{math| (1+i)2·(11−4i)}}
{{math| −i·(1+i)2·(11+4i)}}
549{{math| 15+18i}}
{{math| 18+15i}}
{{math| i·3·(6−5i)}}
{{math| 3·(6+5i)}}
554{{math| 5+23i}}
{{math| 23+5i}}
{{math| (1+i)·(14+9i)}}
{{math| (1+i)·(14−9i)}}
557{{math| 14+19i}}
{{math| 19+14i}}
(p)
(p)
562{{math| 11+21i}}
{{math| 21+11i}}
{{math| (1+i)·(16+5i)}}
{{math| (1+i)·(16−5i)}}
565{{math| 6+23i}}
{{math| 9+22i}}
{{math| 22+9i}}
{{math| 23+6i}}
{{math| i·(2+i)·(8−7i)}}
{{math| (2+i)·(8+7i)}}
{{math| i·(2−i)·(8−7i)}}
{{math| (2−i)·(8+7i)}}
569{{math| 13+20i}}
{{math| 20+13i}}
(p)
(p)
576{{math| 24}}{{math| i·(1+i)6·3}}
577{{math| 1+24i}}
{{math| 24+i}}
(p)
(p)
578{{math| 7+23i}}
{{math| 17+17i}}
{{math| 23+7i}}
{{math| (1+i)·(4+i)2}}
{{math| (1+i)·(4+i)·(4−i)}}
{{math| (1+i)·(4−i)2}}
580{{math| 2+24i}}
{{math| 16+18i}}
{{math| 18+16i}}
{{math| 24+2i}}
{{math| (1+i)2·(2−i)·(5+2i)}}
{{math| −i·(1+i)2·(2+i)·(5+2i)}}
{{math| (1+i)2·(2−i)·(5−2i)}}
{{math| −i·(1+i)2·(2+i)·(5−2i)}}
584{{math| 10+22i}}
{{math| 22+10i}}
{{math| −i·(1+i)3·(8+3i)}}
{{math| −i·(1+i)3·(8−3i)}}
585{{math| 3+24i}}
{{math| 12+21i}}
{{math| 21+12i}}
{{math| 24+3i}}
{{math| i·(2+i)·3·(3−2i)}}
{{math| (2+i)·3·(3+2i)}}
{{math| i·(2−i)·3·(3−2i)}}
{{math| (2−i)·3·(3+2i)}}
586{{math| 15+19i}}
{{math| 19+15i}}
{{math| (1+i)·(17+2i)}}
{{math| (1+i)·(17−2i)}}
592{{math| 4+24i}}
{{math| 24+4i}}
{{math| −i·(1+i)4·(6−i)}}
{{math| −(1+i)4·(6+i)}}
593{{math| 8+23i}}
{{math| 23+8i}}
(p)
(p)
596{{math| 14+20i}}
{{math| 20+14i}}
{{math| (1+i)2·(10−7i)}}
{{math| −i·(1+i)2·(10+7i)}}
601{{math| 5+24i}}
{{math| 24+5i}}
(p)
(p)
605{{math| 11+22i}}
{{math| 22+11i}}
{{math| i·(2−i)·11}}
{{math| (2+i)·11}}
610{{math| 9+23i}}
{{math| 13+21i}}
{{math| 21+13i}}
{{math| 23+9i}}
{{math| i·(1+i)·(2−i)·(6−5i)}}
{{math| (1+i)·(2−i)·(6+5i)}}
{{math| (1+i)·(2+i)·(6−5i)}}
{{math| −i·(1+i)·(2+i)·(6+5i)}}
612{{math| 6+24i}}
{{math| 24+6i}}
{{math| (1+i)2·3·(4−i)}}
{{math| −i·(1+i)2·3·(4+i)}}
613{{math| 17+18i}}
{{math| 18+17i}}
(p)
(p)
617{{math| 16+19i}}
{{math| 19+16i}}
(p)
(p)
625{{math| 7+24i}}
{{math| 15+20i}}
{{math| 20+15i}}
{{math| 24+7i}}
{{math| 25}}
{{math| −(2−i)4}}
{{math| (2+i)3·(2−i)}}
{{math| i·(2+i)·(2−i)3}}
{{math| −i·(2+i)4}}
{{math| (2+i)2·(2−i)2}}
626{{math| 1+25i}}
{{math| 25+i}}
{{math| (1+i)·(13+12i)}}
{{math| (1+i)·(13−12i)}}
628{{math| 12+22i}}
{{math| 22+12i}}
{{math| (1+i)2·(11−6i)}}
{{math| −i·(1+i)2·(11+6i)}}
629{{math| 2+25i}}
{{math| 10+23i}}
{{math| 23+10i}}
{{math| 25+2i}}
{{math| i·(4−i)·(6+i)}}
{{math| i·(4−i)·(6−i)}}
{{math| (4+i)·(6+i)}}
{{math| (4+i)·(6−i)}}
634{{math| 3+25i}}
{{math| 25+3i}}
{{math| (1+i)·(14+11i)}}
{{math| (1+i)·(14−11i)}}
637{{math| 14+21i}}
{{math| 21+14i}}
{{math| i·(3−2i)·7}}
{{math| (3+2i)·7}}
640{{math| 8+24i}}
{{math| 24+8i}}
{{math| i·(1+i)7·(2+i)}}
{{math| i·(1+i)7·(2−i)}}
641{{math| 4+25i}}
{{math| 25+4i}}
(p)
(p)
648{{math| 18+18i}}{{math| −i·(1+i)3·32}}
650{{math| 5+25i}}
{{math| 11+23i}}
{{math| 17+19i}}
{{math| 19+17i}}
{{math| 23+11i}}
{{math| 25+5i}}
{{math| (1+i)·(2+i)·(2−i)·(3+2i)}}
{{math| (1+i)·(2+i)2·(3−2i)}}
{{math| i·(1+i)·(2−i)2·(3−2i)}}
{{math| −i·(1+i)·(2+i)2·(3+2i)}}
{{math| (1+i)·(2−i)2·(3+2i)}}
{{math| (1+i)·(2+i)·(2−i)·(3−2i)}}
653{{math| 13+22i}}
{{math| 22+13i}}
(p)
(p)
656{{math| 16+20i}}
{{math| 20+16i}}
{{math| −i·(1+i)4·(5−4i)}}
{{math| −(1+i)4·(5+4i)}}
657{{math| 9+24i}}
{{math| 24+9i}}
{{math| i·3·(8−3i)}}
{{math| 3·(8+3i)}}
661{{math| 6+25i}}
{{math| 25+6i}}
(p)
(p)
666{{math| 15+21i}}
{{math| 21+15i}}
{{math| (1+i)·3·(6+i)}}
{{math| (1+i)·3·(6−i)}}
673{{math| 12+23i}}
{{math| 23+12i}}
(p)
(p)
674{{math| 7+25i}}
{{math| 25+7i}}
{{math| (1+i)·(16+9i)}}
{{math| (1+i)·(16−9i)}}
676{{math| 10+24i}}
{{math| 24+10i}}
{{math| 26}}
{{math| −i·(1+i)2·(3+2i)2}}
{{math| (1+i)2·(3−2i)2}}
{{math| −i·(1+i)2·(3+2i)·(3−2i)}}
677{{math| 1+26i}}
{{math| 26+i}}
(p)
(p)
680{{math| 2+26i}}
{{math| 14+22i}}
{{math| 22+14i}}
{{math| 26+2i}}
{{math| −i·(1+i)3·(2+i)·(4+i)}}
{{math| −i·(1+i)3·(2+i)·(4−i)}}
{{math| −i·(1+i)3·(2−i)·(4+i)}}
{{math| −i·(1+i)3·(2−i)·(4−i)}}
685{{math| 3+26i}}
{{math| 18+19i}}
{{math| 19+18i}}
{{math| 26+3i}}
{{math| i·(2−i)·(11+4i)}}
{{math| (2+i)·(11+4i)}}
{{math| i·(2−i)·(11−4i)}}
{{math| (2+i)·(11−4i)}}
689{{math| 8+25i}}
{{math| 17+20i}}
{{math| 20+17i}}
{{math| 25+8i}}
{{math| i·(3−2i)·(7+2i)}}
{{math| (3+2i)·(7+2i)}}
{{math| i·(3−2i)·(7−2i)}}
{{math| (3+2i)·(7−2i)}}
692{{math| 4+26i}}
{{math| 26+4i}}
{{math| (1+i)2·(13−2i)}}
{{math| −i·(1+i)2·(13+2i)}}
697{{math| 11+24i}}
{{math| 16+21i}}
{{math| 21+16i}}
{{math| 24+11i}}
{{math| i·(4+i)·(5−4i)}}
{{math| (4+i)·(5+4i)}}
{{math| i·(4−i)·(5−4i)}}
{{math| (4−i)·(5+4i)}}
698{{math| 13+23i}}
{{math| 23+13i}}
{{math| (1+i)·(18+5i)}}
{{math| (1+i)·(18−5i)}}
701{{math| 5+26i}}
{{math| 26+5i}}
(p)
(p)
706{{math| 9+25i}}
{{math| 25+9i}}
{{math| (1+i)·(17+8i)}}
{{math| (1+i)·(17−8i)}}
709{{math| 15+22i}}
{{math| 22+15i}}
(p)
(p)
712{{math| 6+26i}}
{{math| 26+6i}}
{{math| −i·(1+i)3·(8+5i)}}
{{math| −i·(1+i)3·(8−5i)}}
720{{math| 12+24i}}
{{math| 24+12i}}
{{math| −i·(1+i)4·(2−i)·3}}
{{math| −(1+i)4·(2+i)·3}}
722{{math| 19+19i}}{{math| (1+i)·19}}
724{{math| 18+20i}}
{{math| 20+18i}}
{{math| (1+i)2·(10−9i)}}
{{math| −i·(1+i)2·(10+9i)}}
725{{math| 7+26i}}
{{math| 10+25i}}
{{math| 14+23i}}
{{math| 23+14i}}
{{math| 25+10i}}
{{math| 26+7i}}
{{math| (2+i)2·(5+2i)}}
{{math| i·(2+i)·(2−i)·(5−2i)}}
{{math| i·(2−i)2·(5+2i)}}
{{math| (2+i)2·(5−2i)}}
{{math| (2+i)·(2−i)·(5+2i)}}
{{math| i·(2−i)2·(5−2i)}}
729{{math| 27}}{{math| 33}}
730{{math| 1+27i}}
{{math| 17+21i}}
{{math| 21+17i}}
{{math| 27+i}}
{{math| i·(1+i)·(2−i)·(8−3i)}}
{{math| (1+i)·(2+i)·(8−3i)}}
{{math| (1+i)·(2−i)·(8+3i)}}
{{math| −i·(1+i)·(2+i)·(8+3i)}}
733{{math| 2+27i}}
{{math| 27+2i}}
(p)
(p)
738{{math| 3+27i}}
{{math| 27+3i}}
{{math| (1+i)·3·(5+4i)}}
{{math| (1+i)·3·(5−4i)}}
740{{math| 8+26i}}
{{math| 16+22i}}
{{math| 22+16i}}
{{math| 26+8i}}
{{math| (1+i)2·(2−i)·(6+i)}}
{{math| (1+i)2·(2−i)·(6−i)}}
{{math| −i·(1+i)2·(2+i)·(6+i)}}
{{math| −i·(1+i)2·(2+i)·(6−i)}}
745{{math| 4+27i}}
{{math| 13+24i}}
{{math| 24+13i}}
{{math| 27+4i}}
{{math| i·(2+i)·(10−7i)}}
{{math| (2+i)·(10+7i)}}
{{math| i·(2−i)·(10−7i)}}
{{math| (2−i)·(10+7i)}}
746{{math| 11+25i}}
{{math| 25+11i}}
{{math| (1+i)·(18+7i)}}
{{math| (1+i)·(18−7i)}}

id="751–1000" class="wikitable sortable" style="float:left; margin-right:1em"

|+ Norm 751–1000

Norm || Integer || Factorization
754{{math| 5+27i}}
{{math| 15+23i}}
{{math| 23+15i}}
{{math| 27+5i}}
{{math| i·(1+i)·(3−2i)·(5−2i)}}
{{math| (1+i)·(3+2i)·(5−2i)}}
{{math| (1+i)·(3−2i)·(5+2i)}}
{{math| −i·(1+i)·(3+2i)·(5+2i)}}
757{{math| 9+26i}}
{{math| 26+9i}}
(p)
(p)
761{{math| 19+20i}}
{{math| 20+19i}}
(p)
(p)
765{{math| 6+27i}}
{{math| 18+21i}}
{{math| 21+18i}}
{{math| 27+6i}}
{{math| i·(2−i)·3·(4+i)}}
{{math| i·(2−i)·3·(4−i)}}
{{math| (2+i)·3·(4+i)}}
{{math| (2+i)·3·(4−i)}}
769{{math| 12+25i}}
{{math| 25+12i}}
(p)
(p)
772{{math| 14+24i}}
{{math| 24+14i}}
{{math| (1+i)2·(12−7i)}}
{{math| −i·(1+i)2·(12+7i)}}
773{{math| 17+22i}}
{{math| 22+17i}}
(p)
(p)
776{{math| 10+26i}}
{{math| 26+10i}}
{{math| −i·(1+i)3·(9+4i)}}
{{math| −i·(1+i)3·(9−4i)}}
778{{math| 7+27i}}
{{math| 27+7i}}
{{math| (1+i)·(17+10i)}}
{{math| (1+i)·(17−10i)}}
784{{math| 28}}{{math| −(1+i)4·7}}
785{{math| 1+28i}}
{{math| 16+23i}}
{{math| 23+16i}}
{{math| 28+i}}
{{math| i·(2+i)·(11−6i)}}
{{math| (2+i)·(11+6i)}}
{{math| i·(2−i)·(11−6i)}}
{{math| (2−i)·(11+6i)}}
788{{math| 2+28i}}
{{math| 28+2i}}
{{math| (1+i)2·(14−i)}}
{{math| −i·(1+i)2·(14+i)}}
793{{math| 3+28i}}
{{math| 8+27i}}
{{math| 27+8i}}
{{math| 28+3i}}
{{math| i·(3+2i)·(6−5i)}}
{{math| (3+2i)·(6+5i)}}
{{math| i·(3−2i)·(6−5i)}}
{{math| (3−2i)·(6+5i)}}
794{{math| 13+25i}}
{{math| 25+13i}}
{{math| (1+i)·(19+6i)}}
{{math| (1+i)·(19−6i)}}
797{{math| 11+26i}}
{{math| 26+11i}}
(p)
(p)
800{{math| 4+28i}}
{{math| 20+20i}}
{{math| 28+4i}}
{{math| −i·(1+i)5·(2−i)2}}
{{math| −(1+i)5·(2+i)·(2−i)}}
{{math| i·(1+i)5·(2+i)2}}
801{{math| 15+24i}}
{{math| 24+15i}}
{{math| i·3·(8−5i)}}
{{math| 3·(8+5i)}}
802{{math| 19+21i}}
{{math| 21+19i}}
{{math| (1+i)·(20+i)}}
{{math| (1+i)·(20−i)}}
808{{math| 18+22i}}
{{math| 22+18i}}
{{math| −i·(1+i)3·(10+i)}}
{{math| −i·(1+i)3·(10−i)}}
809{{math| 5+28i}}
{{math| 28+5i}}
(p)
(p)
810{{math| 9+27i}}
{{math| 27+9i}}
{{math| (1+i)·(2+i)·32}}
{{math| (1+i)·(2−i)·32}}
818{{math| 17+23i}}
{{math| 23+17i}}
{{math| (1+i)·(20+3i)}}
{{math| (1+i)·(20−3i)}}
820{{math| 6+28i}}
{{math| 12+26i}}
{{math| 26+12i}}
{{math| 28+6i}}
{{math| (1+i)2·(2+i)·(5−4i)}}
{{math| −i·(1+i)2·(2+i)·(5+4i)}}
{{math| (1+i)2·(2−i)·(5−4i)}}
{{math| −i·(1+i)2·(2−i)·(5+4i)}}
821{{math| 14+25i}}
{{math| 25+14i}}
(p)
(p)
829{{math| 10+27i}}
{{math| 27+10i}}
(p)
(p)
832{{math| 16+24i}}
{{math| 24+16i}}
{{math| −(1+i)6·(3−2i)}}
{{math| i·(1+i)6·(3+2i)}}
833{{math| 7+28i}}
{{math| 28+7i}}
{{math| i·(4−i)·7}}
{{math| (4+i)·7}}
841{{math| 20+21i}}
{{math| 21+20i}}
{{math| 29}}
{{math| i·(5−2i)2}}
{{math| (5+2i)2}}
{{math| (5+2i)·(5−2i)}}
842{{math| 1+29i}}
{{math| 29+i}}
{{math| (1+i)·(15+14i)}}
{{math| (1+i)·(15−14i)}}
845{{math| 2+29i}}
{{math| 13+26i}}
{{math| 19+22i}}
{{math| 22+19i}}
{{math| 26+13i}}
{{math| 29+2i}}
{{math| −(2−i)·(3−2i)2}}
{{math| i·(2−i)·(3+2i)·(3−2i)}}
{{math| i·(2+i)·(3−2i)2}}
{{math| (2−i)·(3+2i)2}}
{{math| (2+i)·(3+2i)·(3−2i)}}
{{math| −i·(2+i)·(3+2i)2}}
848{{math| 8+28i}}
{{math| 28+8i}}
{{math| −i·(1+i)4·(7−2i)}}
{{math| −(1+i)4·(7+2i)}}
850{{math| 3+29i}}
{{math| 11+27i}}
{{math| 15+25i}}
{{math| 25+15i}}
{{math| 27+11i}}
{{math| 29+3i}}
{{math| (1+i)·(2+i)2·(4−i)}}
{{math| i·(1+i)·(2−i)2·(4−i)}}
{{math| (1+i)·(2+i)·(2−i)·(4+i)}}
{{math| (1+i)·(2+i)·(2−i)·(4−i)}}
{{math| −i·(1+i)·(2+i)2·(4+i)}}
{{math| (1+i)·(2−i)2·(4+i)}}
853{{math| 18+23i}}
{{math| 23+18i}}
(p)
(p)
857{{math| 4+29i}}
{{math| 29+4i}}
(p)
(p)
865{{math| 9+28i}}
{{math| 17+24i}}
{{math| 24+17i}}
{{math| 28+9i}}
{{math| i·(2−i)·(13+2i)}}
{{math| i·(2−i)·(13−2i)}}
{{math| (2+i)·(13+2i)}}
{{math| (2+i)·(13−2i)}}
866{{math| 5+29i}}
{{math| 29+5i}}
{{math| (1+i)·(17+12i)}}
{{math| (1+i)·(17−12i)}}
872{{math| 14+26i}}
{{math| 26+14i}}
{{math| −i·(1+i)3·(10+3i)}}
{{math| −i·(1+i)3·(10−3i)}}
873{{math| 12+27i}}
{{math| 27+12i}}
{{math| i·3·(9−4i)}}
{{math| 3·(9+4i)}}
877{{math| 6+29i}}
{{math| 29+6i}}
(p)
(p)
881{{math| 16+25i}}
{{math| 25+16i}}
(p)
(p)
882{{math| 21+21i}}{{math| (1+i)·3·7}}
884{{math| 10+28i}}
{{math| 20+22i}}
{{math| 22+20i}}
{{math| 28+10i}}
{{math| (1+i)2·(3−2i)·(4+i)}}
{{math| −i·(1+i)2·(3+2i)·(4+i)}}
{{math| (1+i)2·(3−2i)·(4−i)}}
{{math| −i·(1+i)2·(3+2i)·(4−i)}}
890{{math| 7+29i}}
{{math| 19+23i}}
{{math| 23+19i}}
{{math| 29+7i}}
{{math| i·(1+i)·(2−i)·(8−5i)}}
{{math| (1+i)·(2−i)·(8+5i)}}
{{math| (1+i)·(2+i)·(8−5i)}}
{{math| −i·(1+i)·(2+i)·(8+5i)}}
898{{math| 13+27i}}
{{math| 27+13i}}
{{math| (1+i)·(20+7i)}}
{{math| (1+i)·(20−7i)}}
900{{math| 18+24i}}
{{math| 24+18i}}
{{math| 30}}
{{math| −i·(1+i)2·(2+i)2·3}}
{{math| (1+i)2·(2−i)2·3}}
{{math| −i·(1+i)2·(2+i)·(2−i)·3}}
901{{math| 1+30i}}
{{math| 15+26i}}
{{math| 26+15i}}
{{math| 30+i}}
{{math| i·(4+i)·(7−2i)}}
{{math| i·(4−i)·(7−2i)}}
{{math| (4+i)·(7+2i)}}
{{math| (4−i)·(7+2i)}}
904{{math| 2+30i}}
{{math| 30+2i}}
{{math| −i·(1+i)3·(8+7i)}}
{{math| −i·(1+i)3·(8−7i)}}
905{{math| 8+29i}}
{{math| 11+28i}}
{{math| 28+11i}}
{{math| 29+8i}}
{{math| i·(2+i)·(10−9i)}}
{{math| (2+i)·(10+9i)}}
{{math| i·(2−i)·(10−9i)}}
{{math| (2−i)·(10+9i)}}
909{{math| 3+30i}}
{{math| 30+3i}}
{{math| i·3·(10−i)}}
{{math| 3·(10+i)}}
914{{math| 17+25i}}
{{math| 25+17i}}
{{math| (1+i)·(21+4i)}}
{{math| (1+i)·(21−4i)}}
916{{math| 4+30i}}
{{math| 30+4i}}
{{math| (1+i)2·(15−2i)}}
{{math| −i·(1+i)2·(15+2i)}}
922{{math| 9+29i}}
{{math| 29+9i}}
{{math| (1+i)·(19+10i)}}
{{math| (1+i)·(19−10i)}}
925{{math| 5+30i}}
{{math| 14+27i}}
{{math| 21+22i}}
{{math| 22+21i}}
{{math| 27+14i}}
{{math| 30+5i}}
{{math| i·(2+i)·(2−i)·(6−i)}}
{{math| (2+i)2·(6+i)}}
{{math| i·(2−i)2·(6+i)}}
{{math| (2+i)2·(6−i)}}
{{math| i·(2−i)2·(6−i)}}
{{math| (2+i)·(2−i)·(6+i)}}
928{{math| 12+28i}}
{{math| 28+12i}}
{{math| −(1+i)5·(5+2i)}}
{{math| −(1+i)5·(5−2i)}}
929{{math| 20+23i}}
{{math| 23+20i}}
(p)
(p)
932{{math| 16+26i}}
{{math| 26+16i}}
{{math| (1+i)2·(13−8i)}}
{{math| −i·(1+i)2·(13+8i)}}
936{{math| 6+30i}}
{{math| 30+6i}}
{{math| −i·(1+i)3·3·(3+2i)}}
{{math| −i·(1+i)3·3·(3−2i)}}
937{{math| 19+24i}}
{{math| 24+19i}}
(p)
(p)
941{{math| 10+29i}}
{{math| 29+10i}}
(p)
(p)
949{{math| 7+30i}}
{{math| 18+25i}}
{{math| 25+18i}}
{{math| 30+7i}}
{{math| i·(3−2i)·(8+3i)}}
{{math| (3+2i)·(8+3i)}}
{{math| i·(3−2i)·(8−3i)}}
{{math| (3+2i)·(8−3i)}}
953{{math| 13+28i}}
{{math| 28+13i}}
(p)
(p)
954{{math| 15+27i}}
{{math| 27+15i}}
{{math| (1+i)·3·(7+2i)}}
{{math| (1+i)·3·(7−2i)}}
961{{math| 31}}(p)
962{{math| 1+31i}}
{{math| 11+29i}}
{{math| 29+11i}}
{{math| 31+i}}
{{math| (1+i)·(3+2i)·(6+i)}}
{{math| (1+i)·(3+2i)·(6−i)}}
{{math| (1+i)·(3−2i)·(6+i)}}
{{math| (1+i)·(3−2i)·(6−i)}}
964{{math| 8+30i}}
{{math| 30+8i}}
{{math| (1+i)2·(15−4i)}}
{{math| −i·(1+i)2·(15+4i)}}
965{{math| 2+31i}}
{{math| 17+26i}}
{{math| 26+17i}}
{{math| 31+2i}}
{{math| i·(2+i)·(12−7i)}}
{{math| (2+i)·(12+7i)}}
{{math| i·(2−i)·(12−7i)}}
{{math| (2−i)·(12+7i)}}
968{{math| 22+22i}}{{math| −i·(1+i)3·11}}
970{{math| 3+31i}}
{{math| 21+23i}}
{{math| 23+21i}}
{{math| 31+3i}}
{{math| i·(1+i)·(2−i)·(9−4i)}}
{{math| (1+i)·(2+i)·(9−4i)}}
{{math| (1+i)·(2−i)·(9+4i)}}
{{math| −i·(1+i)·(2+i)·(9+4i)}}
976{{math| 20+24i}}
{{math| 24+20i}}
{{math| −i·(1+i)4·(6−5i)}}
{{math| −(1+i)4·(6+5i)}}
977{{math| 4+31i}}
{{math| 31+4i}}
(p)
(p)
980{{math| 14+28i}}
{{math| 28+14i}}
{{math| (1+i)2·(2−i)·7}}
{{math| −i·(1+i)2·(2+i)·7}}
981{{math| 9+30i}}
{{math| 30+9i}}
{{math| i·3·(10−3i)}}
{{math| 3·(10+3i)}}
985{{math| 12+29i}}
{{math| 16+27i}}
{{math| 27+16i}}
{{math| 29+12i}}
{{math| i·(2−i)·(14+i)}}
{{math| i·(2−i)·(14−i)}}
{{math| (2+i)·(14+i)}}
{{math| (2+i)·(14−i)}}
986{{math| 5+31i}}
{{math| 19+25i}}
{{math| 25+19i}}
{{math| 31+5i}}
{{math| (1+i)·(4+i)·(5+2i)}}
{{math| (1+i)·(4−i)·(5+2i)}}
{{math| (1+i)·(4+i)·(5−2i)}}
{{math| (1+i)·(4−i)·(5−2i)}}
997{{math| 6+31i}}
{{math| 31+6i}}
(p)
(p)
1000{{math| 10+30i}}
{{math| 18+26i}}
{{math| 26+18i}}
{{math| 30+10i}}
{{math| −i·(1+i)3·(2+i)2·(2−i)}}
{{math| (1+i)3·(2−i)3}}
{{math| −(1+i)3·(2+i)3}}
{{math| −i·(1+i)3·(2+i)·(2−i)2}}
{{clear left}}

See also

References

{{Reflist}}

  • {{Cite journal

|last=Dresden

|first=Greg

|last2=Dymacek

|first2=Wayne

|journal=American Mathematical Monthly

|title=Finding factors of factor rings over the Gaussian integers

|volume=112

|year=2005

|issue=7

|pages=602–611

|mr=2158894

|jstor = 30037545

|doi=10.2307/30037545}}

  • {{Cite journal

|first1=Ellen

|last1=Gethner

|first2=Stan

|last2=Wagner

|first3=Brian

|last3=Wick

|title=A stroll through the Gaussian primes

|journal=Amer. Math. Monthly

|jstor=2589708

|volume=105

|issue=4

|year=1998

|pages=327–337

|mr=1614871

|doi=10.2307/2589708

}}

  • {{Cite journal

|last=Matsui

|first=Hajime

|title=A bound for the least Gaussian prime omega with alpha < arg(omega) < beta

|journal=Arch. Math.

|volume=74

|issue=6

|year=2000

|doi=10.1007/s000130050463

|pages=423–431

|mr=1753540

}}