Tangential trapezoid#Isosceles tangential trapezoid
{{Short description|Trapezoid whose sides are all tangent to the same circle}}
{{Use American English|date=August 2020}}
In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal (see isosceles tangential trapezoid below), but they don't have to be.
Special cases
Characterization
If the incircle is tangent to the sides {{mvar|AB}} and {{mvar|CD}} at {{mvar|W}} and {{mvar|Y}} respectively, then a tangential quadrilateral {{mvar|ABCD}} is also a trapezoid with parallel sides {{mvar|AB}} and {{mvar|CD}} if and only if{{rp|Thm. 2}}
:
and {{mvar|AD}} and {{mvar|BC}} are the parallel sides of a trapezoid if and only if
:
Area
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths {{mvar|a, b}}, and any one of the other two sides has length {{mvar|c}}, then the area {{mvar|K}} is given by the formulaH. Lieber and F. von Lühmann, Trigonometrische Aufgaben, Berlin, Dritte Auflage, 1889, p. 154. (This formula can be used only in cases where the bases are parallel.)
:
The area can be expressed in terms of the tangent lengths {{mvar|e, f, g, h}} as{{citation
|last=Josefsson
|first=Martin
|journal=Forum Geometricorum
|pages=119–130
|title=Calculations concerning the tangent lengths and tangency chords of a tangential quadrilateral
|url=http://forumgeom.fau.edu/FG2010volume10/FG201013.pdf
|volume=10
|year=2010
|access-date=2012-02-23
|archive-date=2011-08-13
|archive-url=https://web.archive.org/web/20110813091938/http://forumgeom.fau.edu/FG2010volume10/FG201013.pdf
|url-status=dead
}}.{{rp|p.129}}
:
Inradius
Using the same notations as for the area, the radius in the incircle is
:
The diameter of the incircle is equal to the height of the tangential trapezoid.
The inradius can also be expressed in terms of the tangent lengths as{{rp|p.129}}
:
Moreover, if the tangent lengths {{mvar|e, f, g, h}} emanate respectively from vertices {{mvar|A, B, C, D}} and {{mvar|AB}} is parallel to {{mvar|DC}}, then{{citation
|last=Josefsson
|first=Martin
|journal=Forum Geometricorum
|pages=381–385
|title=The diagonal point triangle revisited
|url=http://forumgeom.fau.edu/FG2014volume14/FG201435.pdf
|volume=14
|year=2014
|access-date=2015-05-09
|archive-date=2014-12-03
|archive-url=https://web.archive.org/web/20141203054840/http://forumgeom.fau.edu/FG2014volume14/FG201435.pdf
|url-status=dead
}}.
:
Properties of the incenter
If the incircle is tangent to the bases at {{mvar|P, Q}}, then {{mvar|P, I, Q}} are collinear, where {{mvar|I}} is the incenter.{{Cite web|title=Problem Set 2.2|url=http://jwilson.coe.uga.edu/MATH7200/ProblemSet2.2.html|access-date=2022-02-10|website=jwilson.coe.uga.edu}}
The angles {{math|∠ AID}} and {{math|∠ BIC}} in a tangential trapezoid {{mvar|ABCD}}, with bases {{mvar|AB}} and {{mvar|DC}}, are right angles.
The incenter lies on the median (also called the midsegment; that is, the segment connecting the midpoints of the legs).
Other properties
The median (midsegment) of a tangential trapezoid equals one fourth of the perimeter of the trapezoid. It also equals half the sum of the bases, as in all trapezoids.
If two circles are drawn, each with a diameter coinciding with the legs of a tangential trapezoid, then these two circles are tangent to each other.{{Cite web|title=Empire-Dental - Здоровая и счастливая улыбка!|url=http://math.chernomorsky.com/index.php?option=com_content&view=article&id=120:inscribed-and-circumscribed-quadrilaterals&catid=62:geometry-homework-8th|access-date=2022-02-10|website=math.chernomorsky.com|archive-date=2021-12-20|archive-url=https://web.archive.org/web/20211220055343/http://math.chernomorsky.com/index.php?option=com_content&view=article&id=120:inscribed-and-circumscribed-quadrilaterals&catid=62:geometry-homework-8th|url-status=dead}}
Right tangential trapezoid
File:Right tangential trapezoid 001.svg
A right tangential trapezoid is a tangential trapezoid where two adjacent angles are right angles. If the bases have lengths {{mvar|a, b}}, then the inradius is{{Cite web|title=Math Message Boards FAQ & Community Help {{!}} AoPS|url=https://artofproblemsolving.com/community/h399084|access-date=2022-02-10|website=artofproblemsolving.com}}
:
Thus the diameter of the incircle is the harmonic mean of the bases.
The right tangential trapezoid has the area
:
and its perimeter {{mvar|P}} is
:
Isosceles tangential trapezoid
File:Bicentric isosceles trapezoid 001.svg tangential trapezoid is bicentric.]]
An isosceles tangential trapezoid is a tangential trapezoid where the legs are equal. Since an isosceles trapezoid is cyclic, an isosceles tangential trapezoid is a bicentric quadrilateral. That is, it has both an incircle and a circumcircle.
If the bases are {{mvar|a, b}}, then the inradius is given by{{Cite web|title=Inscribed Circle and Trapezoid {{!}} Mathematical Association of America|url=https://www.maa.org/press/periodicals/convergence/inscribed-circle-and-trapezoid|archive-url=https://web.archive.org/web/20151014090217/http://www.maa.org/press/periodicals/convergence/inscribed-circle-and-trapezoid|url-status=dead|archive-date=October 14, 2015|access-date=2022-02-10|website=www.maa.org}}
:
To derive this formula was a simple Sangaku problem from Japan. From Pitot's theorem it follows that the lengths of the legs are half the sum of the bases. Since the diameter of the incircle is the square root of the product of the bases, an isosceles tangential trapezoid gives a nice geometric interpretation of the arithmetic mean and geometric mean of the bases as the length of a leg and the diameter of the incircle respectively.
The area {{mvar|K}} of an isosceles tangential trapezoid with bases {{mvar|a, b}} is given byAbhijit Guha, CAT Mathematics, PHI Learning Private Limited, 2014, p. 7-73.
: