Template:A6 honeycombs

This honeycomb is one of 17 unique uniform honeycombs* {{mathworld | urlname = Necklace | title = Necklace}}, {{OEIS el|1=A000029}} 18-1 cases, skipping one with zero marks constructed by

the {\tilde{A}}_6 Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:

class="wikitable mw-collapsible mw-collapsed"

!colspan=5| A6 honeycombs

Heptagon
symmetry

!Extended
symmetry

!Extended
diagram

!Extended
group

!Honeycombs

style="text-align:center;"

!a1

![3[7]]

|{{CDD|node|split1|nodes|3ab|nodes|3ab|branch}}

| {\tilde{A}}_6

|

{{CDD|node_1|split1|nodes_10lur|3ab|nodes|3ab|branch_10l}}

{{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|branch_10l}}

style="text-align:center;"

!i2

!{{Brackets|3{{Bracket|7}}}}

|{{CDD|node_c1|split1|nodeab_c2|3ab|nodeab_c3|3ab|branch_c4}}

| {\tilde{A}}_6×2

|

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|branch}}1

{{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|branch}}

{{CDD|node_1|split1|nodes|3ab|nodes_11|3ab|branch}}

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|branch_11}}

{{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|branch}}

{{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|branch_11}}

{{CDD|node_1|split1|nodes|3ab|nodes_11|3ab|branch_11}}

{{CDD|node|split1|nodes_11|3ab|nodes|3ab|branch}}

{{CDD|node|split1|nodes|3ab|nodes_11|3ab|branch}}

{{CDD|node|split1|nodes|3ab|nodes|3ab|branch_11}}2

{{CDD|node|split1|nodes_11|3ab|nodes_11|3ab|branch}}

{{CDD|node|split1|nodes_11|3ab|nodes|3ab|branch_11}}

{{CDD|node|split1|nodes|3ab|nodes_11|3ab|branch_11}}

{{CDD|node|split1|nodes_11|3ab|nodes_11|3ab|branch_11}}

style="text-align:center;"

!r14

![7[3[7]]]

|{{CDD|node_c1|split1|nodeab_c1|3ab|nodeab_c1|3ab|branch_c1}}

| {\tilde{A}}_6×14

|

{{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|branch_11}}3

References