Template:A6 honeycombs
This honeycomb is one of 17 unique uniform honeycombs* {{mathworld | urlname = Necklace | title = Necklace}}, {{OEIS el|1=A000029}} 18-1 cases, skipping one with zero marks constructed by
the Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:
class="wikitable mw-collapsible mw-collapsed"
!colspan=5| A6 honeycombs |
Heptagon symmetry !Extended !Extended !Honeycombs |
---|
style="text-align:center;"
!a1 ![3[7]] |{{CDD|node|split1|nodes|3ab|nodes|3ab|branch}} | | {{CDD|node_1|split1|nodes_10lur|3ab|nodes|3ab|branch_10l}} {{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|branch_10l}} |
style="text-align:center;"
!i2 !{{Brackets|3{{Bracket|7}}}} |{{CDD|node_c1|split1|nodeab_c2|3ab|nodeab_c3|3ab|branch_c4}} | ×2 | {{CDD|node_1|split1|nodes|3ab|nodes|3ab|branch}}1 {{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|branch}} {{CDD|node_1|split1|nodes|3ab|nodes_11|3ab|branch}} {{CDD|node_1|split1|nodes|3ab|nodes|3ab|branch_11}} {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|branch}} {{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|branch_11}} {{CDD|node_1|split1|nodes|3ab|nodes_11|3ab|branch_11}} {{CDD|node|split1|nodes_11|3ab|nodes|3ab|branch}} {{CDD|node|split1|nodes|3ab|nodes_11|3ab|branch}} {{CDD|node|split1|nodes|3ab|nodes|3ab|branch_11}}2 {{CDD|node|split1|nodes_11|3ab|nodes_11|3ab|branch}} {{CDD|node|split1|nodes_11|3ab|nodes|3ab|branch_11}} {{CDD|node|split1|nodes|3ab|nodes_11|3ab|branch_11}} {{CDD|node|split1|nodes_11|3ab|nodes_11|3ab|branch_11}} |
style="text-align:center;"
!r14 ![7[3[7]]] |{{CDD|node_c1|split1|nodeab_c1|3ab|nodeab_c1|3ab|branch_c1}} | ×14 | {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|branch_11}}3 |
References
{{reflist}}