Teo Mora
{{short description|Italian mathematician}}
Ferdinando 'Teo' Mora{{efn|Teo Mora is his nickname, but used in most of his post-1980s publications; he has also used the pen name Theo Moriarty.}} is an Italian mathematician, and since 1990 until 2019 a professor of algebra at the University of Genoa.
Life and work
Mora's degree is in mathematics from the University of Genoa in 1974. Mora's publications span forty years; his notable contributions in computergebra are the
tangent cone algorithmAn algorithm to compute the equations of tangent cones; An introduction to the tangent cone algorithm.Better algorithms due to Greuel-Pfister and Gräbe are currently available. and its extension of Buchberger theory of Gröbner bases and related algorithm earlierGröbner bases for non-commutative polynomial rings. to non-commutative polynomial ringsExtending the proposal set by George M. Bergman. and more recentlyDe Nugis Groebnerialium 4: Zacharias, Spears, Möller, Buchberger–Weispfenning theory for effective associative rings; see also Seven variations on standard bases. to effective rings; less significantThe result is a weaker version of the result presented
in the same issue of the journal
by Bayer and Morrison. the notion of Gröbner fan; marginal, with respect to the other authors, his contribution to the FGLM algorithm.
Mora is on the managing-editorial-board of the journal Applicable Algebra in Engineering, Communication and Computing published by Springer, and was also formerly an editor of the Bulletin of the Iranian Mathematical Society.
He is the author of the tetralogy Solving Polynomial Equation Systems:
- Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy, on equations in one variable
- Solving Polynomial Equation Systems II: Macaulay's paradigm and Gröbner technology, on equations in several variables
- Solving Polynomial Equation Systems III: Algebraic Solving,
- Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond, on the Buchberger algorithm
Personal life
See also
References
{{reflist|refs=
|title= Mostri Universal
|trans-title= The Universal Pictures monsters
|number= 20
|date= September 12, 2014
|author=
|publisher= RAI 4, Radiotelevisione Italiana
|url= http://www.melevisione.rai.it/dl/portali/site/puntata/ContentItem-adc98db7-9c95-4f96-a77e-59b8f27ecd00.html
|quote= "...[text:] L'intervista — Teo Mora: Professore di Algebra presso il dipartimento di Informatica e Scienze dell'Informazione dell'Università di Genova, è anche un noto esperto di cinema horror. Ha curato Storia del cinema dell'orrore, un'autorevole guida in tre volumi con approfondimenti, schede e analisi dettagliate sui film, i registi e gli attori... [multimedia: video content] ..."
}} Translation: "...[text:] professor of Algebra in the Computer and Information Science department of the University of Genoa, also a well-known expert on horror films. His book Storia del cinema dell'orrore is an authoritative guide with in-depth detailed descriptions and analysis of films, directors, and actors... [multimedia: video content] ..."
|title= O tempora, O... Teo Mora
|author= Giovanni Bogani
|date= December 11, 2002
|publisher= Repubblica.it
|location= Genoa, Italy
|url= http://trovacinema.repubblica.it/news/dettaglio/o-tempora-oteo-mora/198071/
|quote= ...Teo Mora vive a Genova. ...scritto libri come La madre di tutte le dualità: l'algoritmo di Moeller, Il teorema di Kalkbrenner, o L'algoritmo di Buchberger ... Negli [1977] anni ’70, Mora aveva scritto una monumentale Storia del cinema horror. ... la [2001] ripropone, in una nuova edizione, riveduta, corretta e completamente aggiornata. ...Nel primo volume... fino al 1957... Nosferatu, attori come Boris Karloff e Bela Lugosi... film come Il gabinetto del dottor Caligari. ...Nel secondo volume si arriva fino al 1966... Roger Corman... Il terzo volume arriva fino al 1978... Brian De Palma, David Cronenberg, George Romero, Dario Argento, Mario Bava. ...
|author-link= Giovanni Bogani
}} Translation: "...Teo Mora lives in Genoa. ...written works include The Mother of All Dualities: The Möller Algorithm, The Kalkbrenner Theorem, and The Buchberger Algorithm ... In the 1970s, Mora wrote the monumental History of Horror Cinema. ...reprinted [in 2001], as a new edition: revised, corrected, and completely updated. Two volume are already out, the third [volume] will be released in late January [2002], the fourth [volume] in spring 2003. ... In the first volume... [covering] through 1957... Nosferatu, actors like Boris Karloff and Bela Lugosi... films like The Cabinet of Dr. Caligari. ...The second volume covers until 1966... Roger Corman, director ...The third volume covers through 1978... Brian De Palma, David Cronenberg, George Romero, Dario Argento, Mario Bava. ..."
[https://www.springer.com/computer/theoretical+computer+science/journal/200/PS2?detailsPage=editorialBoard Springer-Verlag website].
|title= Review of solving polynomial equation systems II: Macaulay's paradigm and Gröbner technology by Teo Mora (Cambridge University Press 2005)
|author= S. C. Coutinho (UFRJ)
|date= March 2009
|journal= ACM SIGACT News
|volume= 40
|issue= 1
|pages= 14–17
|doi= 10.1145/1515698.1515702
|s2cid= 12448065
|url= https://www.cs.umd.edu/~gasarch/bookrev/40-1.pdf#page=7
|via= ACM Digital Library
}}
|title= [Review of the book] Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy [and also Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology]
|author= David P. Roberts (UMN)
|date= September 14, 2006
|publisher= Mathematical Association of America Press
|url= http://www.maa.org/press/maa-reviews/solving-polynomial-equation-systems-i-the-kronecker-duval-philosophy
}}
}}
Notes
{{notelist}}
Further reading
- {{anchor|mora77}}{{cite book
|title= Storia del cinema dell'orrore
|author= Teo Mora
|date= 1977
|isbn= 978-88-347-0800-2
|volume= 1
|publisher= Fanucci
|url= http://www.fantascienza.com/catalogo/opere/NILF1133301/storia-del-cinema-dell-orrore-vol-primo-1895-1956/
|ref=none
}}. {{cite web|title= Second |url= http://www.fantascienza.com/catalogo/opere/NILF1133300/storia-del-cinema-dell-orrore-vol-secondo-tomo-primo-1957-19/|ref=none}} and {{cite web|title= third |url= http://www.fantascienza.com/catalogo/opere/NILF1133299/storia-del-cinema-dell-orrore-vol-secondo-tomo-secondo-1957/|ref=none}} volumes: {{ISBN|88-347-0850-4}}, {{ISBN|88-347-0897-0}}. Reprinted 2001.
- {{anchor|Diamond}}{{cite journal
|title = The diamond lemma for ring theory
|journal = Advances in Mathematics
|volume = 29
|number = 2
|pages = 178–218
|year = 1978
|author = George M Bergman
|doi = 10.1016/0001-8708(78)90010-5
|doi-access=free
|ref=none
}}
- {{anchor|mora82}}{{cite book
|chapter= An algorithm to compute the equations of tangent cones
|author= F. Mora
|title= Computer Algebra: EUROCAM '82, European Computer Algebra Conference, Marseilles, France, April 5-7, 1982
|volume= 144
|pages= 158–165
|date= 1982
|doi= 10.1007/3-540-11607-9_18
|series= Lecture Notes in Computer Science
|isbn= 978-3-540-11607-3
|ref=none
}}
- {{anchor|mora85}}{{cite book
|author= F. Mora
|title= Algebraic Algorithms and Error-Correcting Codes: 3rd International Conference, AAECC-3, Grenoble, France, July 15-19, 1985, Proceedings
|chapter= Groebner bases for non-commutative polynomial rings
|date= 1986
|volume= 229
|pages= 353–362
|url= https://link.springer.com/content/pdf/10.1007/3-540-16776-5_740.pdf
|doi= 10.1007/3-540-16776-5_740
|series= Lecture Notes in Computer Science
|isbn= 978-3-540-16776-1
|ref=none
}}
- {{anchor|BayerMorrison}}{{cite journal
|title= Standard bases and geometric invariant theory I. Initial ideals and state polytopes
|author1= David Bayer
|author2= Ian Morrison
|journal= Journal of Symbolic Computation
|date= 1988
|volume= 6
|issue= 2–3
|pages= 209–218
|doi= 10.1016/S0747-7171(88)80043-9
|ref=none
|doi-access= free
}}
- also in: {{cite book
|title=Computational Aspects of Commutative Algebra
|editor= Lorenzo Robbiano
|date= 1989
|publisher=Academic Press
|volume= 6
|number= 2–3
|location= London
|ref=none
}}
- {{anchor|7Var}}{{cite web
|title= Seven variations on standard bases
|author= Teo Mora
|date= 1988
|url= http://www.dima.unige.it/~morafe/PUBLICATIONS/7Variations.pdf.gz
|ref=none
}}
- {{anchor|PMT}}{{cite journal
|title= An introduction to the tangent cone algorithm
|author1= Gerhard Pfister
|author2=T.Mora
|author3=Carlo Traverso
|date= 1992
|editor= Christoph M Hoffmann
|journal= Issues in Robotics and Nonlinear Geometry (Advances in Computing Research)
|volume= 6
|pages= 199–270
|url= http://www.dima.unige.it/~morafe/PUBLICATIONS/TgCone.ps.gz
|ref=none
}}
- {{anchor|mora94}}{{cite journal
|title= An introduction to commutative and non-commutative Gröbner bases
|author= T. Mora
|date= 1994
|journal= Theoretical Computer Science
|volume= 134
|pages= 131–173
|url= http://www.dima.unige.it/~morafe/PUBLICATIONS/Kyoto.ps.gz
|doi= 10.1016/0304-3975(94)90283-6
|ref=none
|doi-access= free
}}
- {{anchor|Gr}}{{cite journal
|title = Algorithms in Local Algebra
|journal = Journal of Symbolic Computation
|volume = 19
|year=1995
|number = 6
|pages = 545–557
|author = Hans-Gert Gräbe
|doi = 10.1006/jsco.1995.1031
|url = https://ul.qucosa.de/api/qucosa%3A32791/attachment/ATT-0/
|ref=none
|doi-access = free
}}
- {{anchor|GP}}{{cite news
| title=Advances and improvements in the theory of standard bases and syzygies
| author1=Gert-Martin Greuel
| author2=G. Pfister
| year=1996
| citeseerx=10.1.1.49.1231
|ref=none
}}
- {{anchor|caboaraMora02}}{{cite journal
|title= The Chen-Reed-Helleseth-Truong Decoding Algorithm and the Gianni-Kalkbrenner Gröbner Shape Theorem
|author= M.Caboara, T.Mora
|date= 2002
|journal= Journal of Applicable Algebra
|volume= 13
|issue= 3
|pages= 209–232
|url= http://www.dima.unige.it/~morafe/PUBLICATIONS/codici.ps.gz
|doi= 10.1007/s002000200097
|s2cid= 2505343
|ref=none
}}
- {{anchor|alonsoMarinariMora03}}{{cite journal
|title= The Big Mother of All the Dualities, I: Möller Algorithm
|author1= M.E. Alonso
|author2=M.G. Marinari
|author3=M.T. Mora
|journal= Communications in Algebra
|date= 2003
|volume= 31
|issue= 2
|pages= 783–818
|url= http://www.dima.unige.it/~morafe/PUBLICATIONS/3Marie.ps.gz
|doi= 10.1081/AGB-120017343
|citeseerx= 10.1.1.57.7799
|s2cid= 120556267
|ref=none
}}
- {{anchor|spes1}}{{cite book
|title= Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy
|author= Teo Mora
|isbn= 9780521811545
|date= March 1, 2003
|publisher= Cambridge University Press
|series= Encyclopedia of Mathematics and its Application
|volume= 88
|doi= 10.1017/cbo9780511542831
|s2cid= 118216321
|ref=none
}}
- {{anchor|spes2}}{{cite book
|title= Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology
|author= T. Mora
|date= 2005
|publisher= Cambridge University Press
|series= Encyclopedia of Mathematics and its Applications
|volume= 99
|ref=none
}}
- {{anchor|spes3}}{{cite book
|title= Solving Polynomial Equation Systems III: Algebraic Solving
|author= T. Mora
|date= 2015
|publisher= Cambridge University Press
|series= Encyclopedia of Mathematics and its Applications
|volume= 157
|ref=none
}}
- {{anchor|spes1}}{{cite book
|title= Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
|author= T Mora
|date= 2016
|publisher= Cambridge University Press
|series= Encyclopedia of Mathematics and its Applications
|volume= 158
|url= https://books.google.com/books?id=3O-7CwAAQBAJ
|isbn= 9781107109636
|ref=none
}}
- {{anchor|NG4}}{{cite book
|author= T. Mora
|title= Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '15
|chapter= De Nugis Groebnerialium 4: Zacharias, Spears, Möller
|date= 2015
|pages= 283–290
|doi= 10.1145/2755996.2756640
|isbn= 9781450334358
|s2cid= 14654596
|ref=none
}}
- {{anchor|Ceria}}{{cite journal
|title = Buchberger–Weispfenning theory for effective associative rings
|journal = Journal of Symbolic Computation
|volume = 83
|pages = 112–146
|year = 2016
|author1 = Michela Ceria
|author2 = Teo Mora
|doi = 10.1016/j.jsc.2016.11.008
|arxiv = 1611.08846
|s2cid = 10363249
|ref=none
}}
- {{anchor|mora16}}{{cite book
|title= Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
|author= T Mora
|date= 2016
|publisher= Cambridge University Press
|series= Encyclopedia of Mathematics and its Applications
|volume= 158
|url= https://books.google.com/books?id=3O-7CwAAQBAJ
|isbn= 9781107109636
|ref=none
}}
== External links ==
- Teo Mora and Michela Ceria, Do It Yourself: Buchberger and Janet bases over effective rings, [https://doi.org/10.5446/47997 Part 1: Buchberger Algorithm via Spear’s Theorem, Zacharias’ Representation, Weisspfenning Multiplication], [https://doi.org/10.5446/47998 Part 2: Moeller Lifting Theorem vs Buchberger Criteria], [https://doi.org/10.5446/47996 Part 3: What happens to involutive bases?]. Invited talk at [http://icms-conference.org/2020/ ICMS 2020 International Congress on Mathematical Software ], Braunschweig, 13-16 July 2020
{{Authority control}}
{{DEFAULTSORT:Mora, Teo}}
Category:Year of birth missing (living people)
Category:Italian mathematicians