Translation surface (differential geometry)

{{Short description|Surface generated by translations}}

File:Parabol-sf-def.svg

In differential geometry a translation surface is a surface that is generated by translations:

  • For two space curves c_1, c_2 with a common point P, the curve c_1 is shifted such that point P is moving on c_2. Through this procedure, curve c_1 generates a surface: the translation surface.

If both curves are contained in a common plane, the translation surface is planar (part of a plane). This case is generally ignored.

File:Parabol-ezh-sf.svg

File:Parabol-sf-sin.svg

File:schraubfl-ksf-sf.svg

Simple examples:

  1. Right circular cylinder: c_1 is a circle (or another cross section) and c_2 is a line.
  2. The elliptic paraboloid \; z=x^2+y^2\; can be generated by \ c_1:\; (x,0,x^2)\ and \ c_2:\;(0,y,y^2)\ (both curves are parabolas).
  3. The hyperbolic paraboloid z=x^2-y^2 can be generated by c_1: (x,0,x^2) (parabola) and c_2:(0,y,-y^2) (downwards open parabola).

Translation surfaces are popular in descriptive geometryH. Brauner: Lehrbuch der Konstruktiven Geometrie, Springer-Verlag, 2013,{{ISBN|3709187788}}, 9783709187784, p. 236Fritz Hohenberg: Konstruktive Geometrie in der Technik, Springer-Verlag, 2013, {{ISBN|3709181488}}, 9783709181485, p. 208 and architecture,Hans Schober: Transparente Schalen: Form, Topologie, Tragwerk, John Wiley & Sons, 2015, {{ISBN|343360598X}}, 9783433605981, S. 74 because they can be modelled easily.

In differential geometry minimal surfaces are represented by translation surfaces or as midchord surfaces (s. below).Wilhelm Blaschke, Kurt Reidemeister: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie, Springer-Verlag, 2013,{{ISBN|364247392X}}, 9783642473920, p. 94

The translation surfaces as defined here should not be confused with the translation surfaces in complex geometry.

Parametric representation

For two space curves \ c_1: \; \vec x=\gamma_1(u)\ and \ c_2:\; \vec x=\gamma_2(v)\ with \gamma_1(0)=\gamma_2(0)=\vec 0 the translation surface \Phi can be represented by:Erwin Kruppa: Analytische und konstruktive Differentialgeometrie, Springer-Verlag, 2013, {{ISBN|3709178673}}, 9783709178676, p. 45

:(TS) \quad \vec x=\gamma_1(u)+\gamma_2(v) \;

and contains the origin. Obviously this definition is symmetric regarding the curves c_1 and c_2. Therefore, both curves are called generatrices (one: generatrix). Any point X of the surface is contained in a shifted copy of c_1 and c_2 resp.. The tangent plane at X is generated by the tangentvectors of the generatrices at this point, if these vectors are linearly independent.

If the precondition \gamma_1(0)=\gamma_2(0)=\vec 0 is not fulfilled, the surface defined by (TS) may not contain the origin and the curves c_1,c_2. But in any case the surface contains shifted copies of any of the curves c_1,c_2 as parametric curves \vec x(u_0,v) and \vec x(u,v_0) respectively.

The two curves c_1,c_2 can be used to generate the so called corresponding midchord surface. Its parametric representation is

: (MCS) \quad \vec x=\frac{1}{2}(\gamma_1(u)+\gamma_2(v)) \; .

Helicoid as translation surface and midchord surface

File:Wendelfl-sf.svg

File:Wendelflaeche-sfl.svg

A helicoid is a special case of a generalized helicoid and a ruled surface. It is an example of a minimal surface and can be represented as a translation surface.

The helicoid with the parametric representation

:\vec x(u,v)= (u\cos v,u\sin v, kv)

has a turn around shift (German: Ganghöhe) 2\pi k.

Introducing new parameters \alpha, \varphiJ.C.C. Nitsche: Vorlesungen über Minimalflächen, Springer-Verlag, 2013, {{ISBN|3642656196}}, 9783642656194, p. 59 such that

:u=2a\cos\left(\frac{\alpha-\varphi} 2 \right)\ , \ \ v=\frac{\alpha+\varphi}{2}

and a a positive real number, one gets a new parametric representation

  • \vec X(\alpha,\varphi)= \left (a\cos\alpha + a\cos \varphi \; ,\; a\sin\alpha + a\sin \varphi\; ,\; \frac{k\alpha}{2}+\frac{k\varphi}{2}\right )

:::=(a\cos\alpha , a\sin\alpha , \frac{k\alpha}{2} ) \ +\ (a\cos\varphi , a\sin\varphi ,\frac{k\varphi}{2} )\ ,

which is the parametric representation of a translation surface with the two identical (!) generatrices

:c_1: \; \gamma_1=\vec X(\alpha,0)=\left(a+a\cos\alpha , a\sin\alpha , \frac{k\alpha}{2} \right) \quad and

:c_2: \; \gamma_2=\vec X(0,\varphi)=\left(a+a\cos\varphi , a\sin\varphi ,\frac{k\varphi}{2} \right)\ .

The common point used for the diagram is P=\vec X(0,0)=(2a,0,0).

The (identical) generatrices are helices with the turn around shift k\pi\;, which lie on the cylinder with the equation (x-a)^2+y^2=a^2. Any parametric curve is a shifted copy of the generatrix c_1 (in diagram: purple) and is contained in the right circular cylinder with radius a, which contains the z-axis.

The new parametric representation represents only such points of the helicoid that are within the cylinder with the equation x^2+y^2=4a^2.

File:Wendelfl-sehnenmfl.svg

From the new parametric representation one recognizes, that the helicoid is a midchord surface, too:

:

\begin{align}

\vec X(\alpha,\varphi) & = \left(a\cos\alpha , a\sin\alpha , \frac{k\alpha}{2} \right) \ +\ \left(a\cos\varphi , a\sin\varphi ,\frac{k\varphi}{2} \right) \\[5pt]

& =\frac{1}{2}(\delta_1(\alpha) +\delta_2(\varphi))\ ,\quad

\end{align}

where

:d_1: \ \vec x=\delta_1(\alpha)=(2a\cos\alpha , 2a\sin\alpha , k\alpha ) \ ,\quad and

:d_2: \ \vec x=\delta_2(\varphi)=(2a\cos\varphi , 2a\sin\varphi , k\varphi ) \ ,\quad

are two identical generatrices.

In diagram: P_1: \delta_1(\alpha_0) lies on the helix d_1 and P_2: \delta_2(\varphi_0) on the (identical) helix d_2. The midpoint of the chord is \ M: \frac{1}{2}(\delta_1(\alpha_0) +\delta_2(\varphi_0))=\vec X(\alpha_0,\varphi_0)\ .

Advantages of a translation surface

; Architecture:

A surface (for example a roof) can be manufactured using a jig for curve

c_2 and several identical jigs of curve c_1. The jigs can be designed without any knowledge of mathematics. By positioning the jigs the rules of a translation surface have to be respected only.

; Descriptive geometry:

Establishing a parallel projection of a translation surface one 1) has to produce projections of the two generatrices, 2) make a jig of curve c_1 and 3) draw with help of this jig copies of the curve respecting the rules of a translation surface. The contour of the surface is the envelope of the curves drawn with the jig. This procedure works for orthogonal and oblique projections, but not for central projections.

; Differential geometry:

For a translation surface with parametric representation

\vec x(u,v)=\gamma_1(u)+\gamma_2(v) \;

the partial derivatives of \vec x(u,v) are simple derivatives of the curves. Hence the mixed derivatives are always 0 and the coefficient M of the second fundamental form is 0, too. This is an essential facilitation for showing that (for example) a helicoid is a minimal surface.

References

  • G. Darboux: Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal, 1–4, Chelsea, reprint, 972, pp. Sects. 81–84, 218
  • Georg Glaeser: Geometrie und ihre Anwendungen in Kunst, Natur und Technik, Springer-Verlag, 2014, {{ISBN|364241852X}}, p. 259
  • W. Haack: Elementare Differentialgeometrie, Springer-Verlag, 2013, {{ISBN|3034869509}}, p. 140
  • C. Leopold: Geometrische Grundlagen der Architekturdarstellung. Kohlhammer Verlag, Stuttgart 2005, {{ISBN|3-17-018489-X}}, p. 122
  • D.J. Struik: Lectures on classical differential geometry, Dover, reprint ,1988, pp. 103, 109, 184