Trimolybdenum phosphide
{{Chembox
| Name = Trimolybdenum phosphide
| ImageFile1 =
| ImageSize1 = 200px
| ImageFile2 =
| ImageSize2 = 200px
| IUPACName =
| PIN =
| OtherNames =
|Section1={{Chembox Identifiers
| CASNo =
| CASNo_Ref = {{cascite|correct|CAS}}
| ChemSpiderID =
| ChEBI =
| EINECS =
| Gmelin =
| PubChem =
| DTXSID =
| SMILES =
| StdInChI =
| StdInChIKey =
}}
|Section2={{Chembox Properties
| Mo=3 | P=1
| Appearance = grey crystals
| Density =
| MeltingPtC =
| BoilingPtC =
| Solubility = insoluble
}}
|Section3={{Chembox Hazards
| MainHazards =
| GHS_ref =
| GHSPictograms =
| GHSSignalWord =
| HPhrases =
| PPhrases =
}}
|Section6={{Chembox Related
| OtherCompounds = Molybdenum monophosphide, Molybdenum diphosphide
}}
}}
Trimolybdenum phosphide is a binary inorganic compound of molybdenum metal and phosphorus with the chemical formula {{chem2|Mo3P}}.{{cite journal |last1=Kondori |first1=Alireza |last2=Esmaeilirad |first2=Mohammadreza |last3=Baskin |first3=Artem |last4=Song |first4=Boao |last5=Wei |first5=Jialiang |last6=Chen |first6=Wei |last7=Segre |first7=Carlo U. |last8=Shahbazian-Yassar |first8=Reza |last9=Prendergast |first9=David |last10=Asadi |first10=Mohammad |title=Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo 3 P) for Electrochemical Hydrogen Evolution |journal=Advanced Energy Materials |date=June 2019 |volume=9 |issue=22 |doi=10.1002/aenm.201900516 |bibcode=2019AdEnM...900516K |osti=1531000 |s2cid=242323789 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900516 |access-date=9 March 2024 |language=en |issn=1614-6832}}{{cite journal |last1=Muchharla |first1=Baleeswaraiah |last2=Malali |first2=Praveen |last3=Daniel |first3=Brenna |last4=Kondori |first4=Alireza |last5=Asadi |first5=Mohammad |last6=Cao |first6=Wei |last7=Elsayed-Ali |first7=Hani E. |last8=Castro |first8=Mickaël |last9=Elahi |first9=Mehran |last10=Adedeji |first10=Adetayo |last11=Sadasivuni |first11=Kishor Kumar |last12=Maurya |first12=Muni Raj |last13=Kumar |first13=Kapil |last14=Karoui |first14=Abdennaceur |last15=Kumar |first15=Bijandra |title=Tri-molybdenum phosphide (Mo3P) and multi-walled carbon nanotube junctions for volatile organic compounds (VOCs) detection |journal=Applied Physics Letters |date=13 September 2021 |volume=119 |issue=11 |doi=10.1063/5.0059378 |s2cid=240537366 |url=https://pubs.aip.org/aip/apl/article/119/11/113101/39954/Tri-molybdenum-phosphide-Mo3P-and-multi-walled}}
Preparation
Trimolybdenum phosphide can be obtained via electrolysis of a melt mixture of molybdenum hexametaphosphate with molybdenum(VI) oxide and sodium chloride.
Properties
Trimolybdenum phosphide forms grey crystals of tetragonal crystal system with space group I4.{{cite book |last1=Donnay |first1=Joseph Désiré Hubert |title=Crystal Data: Inorganic compounds |date=1973 |publisher=National Bureau of Standards |page=16 |url=https://books.google.com/books?id=5lVCBwmZsLYC&dq=%22Molybdenum+phosphide+Mo3P%22&pg=RA4-PA16 |access-date=9 March 2024 |language=en}} It is insoluble in water. Trimolybdenum phosphide becomes superconducting at 7 K.{{cite book |last1=Mellor |first1=Joseph William |title=Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry: suppl. 1, pt. 1. N |date=1971 |publisher=Longmans, Green and Company |page=337 |url=https://books.google.com/books?id=BBhGAQAAMAAJ&q=Tri+Molybdenum+phosphide |access-date=9 March 2024 |language=en}}
Uses
Trimolybdenum phosphide can be used as a catalyst for electrocatalytic processes.{{cite journal |last1=Kondori |first1=Alireza |last2=Esmaeilirad |first2=Mohammadreza |last3=Baskin |first3=Artem |last4=Song |first4=Boao |last5=Wei |first5=Jialiang |last6=Chen |first6=Wei |last7=Segre |first7=Carlo U. |last8=Shahbazian-Yassar |first8=Reza |last9=Prendergast |first9=David |last10=Asadi |first10=Mohammad |title=Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo 3 P) for Electrochemical Hydrogen Evolution |journal=Advanced Energy Materials |date=June 2019 |volume=9 |issue=22 |doi=10.1002/aenm.201900516 |bibcode=2019AdEnM...900516K |osti=1531000 |s2cid=242323789 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900516 |access-date=9 March 2024}}{{cite web |last1=Kuei |first1=Brooke |title=Uncovering the Origin of High Performance in a New Water Splitting Catalyst |url=https://foundry.lbl.gov/2019/08/27/uncovering-the-origin-of-high-performance-in-a-new-water-splitting-catalyst/ |publisher=foundry.lbl.gov |access-date=9 March 2024 |date=August 27, 2019}} It can also be used in accumulators.{{cite web |last1=Timmer |first1=John |title=New battery seems to offer it all: Lithium-metal/lithium-air electrodes |url=https://arstechnica.com/science/2023/02/new-battery-seems-to-offer-it-all-lithium-metal-lithium-air-electrodes/ |website=Ars Technica |access-date=9 March 2024 |language=en-us |date=6 February 2023}}{{cite web |title=(201d) First-Principles Study of Lithium-Air Batteries Based on Tri-Molybdenum Phosphide (Mo3P) Nanoparticles {{!}} AIChE |url=https://www.aiche.org/academy/conferences/aiche-annual-meeting/2020/proceeding/paper/201d-first-principles-study-lithium-air-batteries-based-on-tri-molybdenum-phosphide-mo3p |publisher=aiche.org |access-date=9 March 2024}}
References
{{Reflist}}
{{Phosphorus compounds}}
{{Molybdenum compounds}}
{{Phosphides}}