Triticeae#Genetics

{{Short description|Tribe of grasses}}

{{automatic taxobox

|image = Hordeum_jubatum_-_close-up_(aka).jpg

|display_parents = 3

|taxon = Triticeae

|authority = L.

|subdivision_ranks = Genera

|subdivision = See text.

}}

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat (see wheat taxonomy), barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

Genera of Triticeae

Genera recognized in Triticeae according to Robert Soreng et al.:{{cite journal|last1=Soreng|first1=Robert J.|last2=Peterson|first2=Paul M.|last3=Romaschenko|first3=Konstantin|last4=Davidse|first4=Gerrit|last5=Teisher|first5=Jordan K.|last6=Clark|first6=Lynn G.|last7=Barberá|first7=Patricia|last8=Gillespie|first8=Lynn J.|last9=Zuloaga|first9=Fernando O.|title=A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications|journal=Journal of Systematics and Evolution|volume=55|issue=4|year=2017|pages=259–290|issn=1674-4918|doi=10.1111/jse.12262|doi-access=free|hdl=10261/240149|hdl-access=free}}

{{Div col}}

{{Div col end}}

Cultivated or edible species

[[Image:Gluten Sources.png|thumb|350px|right|4 different commercial forms

of Triticeae cultivars. Clockwise from top: common wheat flour, European spelt, barley corns, rolled rye]]

=''Aegilops''=

  • Various species (rarely identifiable to species in archaeological material) occur in pre-agrarian archaeobotanical remains from Near Eastern sites. Their edible grains were doubtless harvested as wild food resources.
  • speltoides – [http://www.ibiblio.org/pfaf/cgi-bin/arr_html?Aegilops+speltoides ancient food grain], putative source of B genome in bread wheat{{Clarify|date=July 2009}} and G genome in T. timopheevii{{Clarify|date=July 2009}}
  • tauschii – Source of D genome in wheat{{Clarify|date=July 2009}}

=''Amblyopyrum''=

  • muticum – Source of T genome.

=''Elymus''=

Various species are cultivated for pastoral purposes or to protect fallow

land from opportunistic or invasive species

  • canadensis – [http://www.pfaf.org/database/plants.php?Elymus+canadensis edible, bread-flour capable, fiddly seeds]
  • trachycaulus – [http://www.hort.purdue.edu/newcrop/proceedings1999/v4-015b.html pastoral cultivar]

=''Hordeum''=

Many barley cultivars

  • vulgare – common barley (6 subspecies, ~100 cultivars)
  • bulbosum – [http://www.pfaf.org/database/plants.php?Hordeum+bulbosum edible seeds]
  • murinum (mouse barley) – [http://www.pfaf.org/database/plants.php?Hordeum+murinum cooked as piñole, bread-flour capable], medicinal: diuretic.

=''Leymus''=

  • arenarius (Lyme grass) – [http://www.pfaf.org/database/plants.php?Leymus+arenarius bread-flour capable, possible food additive]
  • racemosus (Volga Wild Rye) – [http://www.pfaf.org/database/plants.php?Leymus+racemosus drought tolerant cereal, used in Russia]
  • condensatus (Giant Wild Rye) – [http://www.pfaf.org/database/plants.php?Leymus+condensatus Edible seeds, harvesting problematic small seeds]
  • triticoides (Squaw grass) – [http://www.pfaf.org/database/plants.php?Leymus+triticoides used in North America, seed hairs must be singed]

=''Secale''=

Ryes

  • cereale (Cereal Rye) – Livestock feed and sour dough bread – 6 subspecies.
  • cornutum (spurred rye) – herbal medicine: ergot (ergot of spurred rye) at very low doses; {{cite journal | author = Eadie M | title = Ergot of rye-the first specific for migraine | journal = J Clin Neurosci | volume = 11 | issue = 1 | pages = 4–7 | year = 2004 | pmid = 14642357 | doi = 10.1016/j.jocn.2003.05.002| s2cid = 45659231 }} dangerously toxic as food.
  • strictum - [http://www.pfaf.org/database/plants.php?Secale+strictum+kuprijanovii actively cultivated]
  • sylvestre - (Tibetan Rye) - [http://www.pfaf.org/database/plants.php?Secale+sylvestre actively cultivated] in Tibet and China highlands.
  • vavilovii (Armenian Wild Rye) – [http://www.pfaf.org/database/plants.php?Secale+vavilovii edible seeds, thickener].

=''Triticum''=

(Wheat)

  • aestivum (bread wheat) – (AABBDD Genome)
  • compactum (club wheat)
  • macha (hulled)
  • spelta (hulled, spelt)
  • sphaerococcum (shot wheat)
  • monococcum (Einkorn wheat) (A Genome)
  • timopheevii (Sanduri wheat)
  • turgidum (poulard wheat) (AABB Genome){{cite journal|author1=Oliver, R.E. |author2=Cai, X. |author3=Friesen, T.L. |author4=Halley, S. |author5=Stack, R.W. |author6=Xu, S.S. |year=2008|title=Evaluation of Fusarium Head Blight Resistance in Tetraploid Wheat (Triticum turgidum L.)|journal=Crop Science|volume=48|issue=1|pages=213–222|doi=10.2135/cropsci2007.03.0129}}
  • carthlicum (Persian black wheat)
  • dicoccoides (wild emmer wheat)
  • dicoccum (cultivated emmer wheat) - used to make Farro
  • durum (durum wheat)
  • paleocolchicum
  • polonicum (Polish wheat)
  • turanicum (Khorasan wheat)

Genetics

{{missing information|cladogram of the nuclear genome sets; some more clear discussion separating nuclear and organellar topics|date=March 2022}}

border="0" cellspacing="0" cellpadding="1" style="float:Right; text-align:center; margin-left:2em; margin-bottom:1em; border:1px #feb solid; background:#fff7f8;"

|+ style="font-size:90%"| Genomes of some Triticeae genera and species

style = "background:#ffe7d7"

|

style="text-align:left; width:200px;"| Genera & Speciesstyle="width:40px" | 1ststyle="width:40px"| 2ndstyle="width:40px"| 3rd
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum boeoticum

| AA

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum monococcum

| AMAM

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum urartu

| AUAU

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops speltoides var. speltoides

| BB

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops caudata

| CC

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops tauschii

| DD

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Lophopyrum elongatum

| EE

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Hordeum vulgare

| HH

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Thinopyrum bessarabicum

| JJ

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops comosa

| MM

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops uniaristata

| NN

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Henrardia persica

| OO

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Agropyrum cristatum

| PP

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Secale cereale

| RR

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops bicornis

| SS

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Amblyopyrum muticum

| TT

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops umbellulata

| UU

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Dasypyrum

| VV

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Psathyrostachys

| NsNs

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Pseudoroegneria

| StSt

style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum zhukovskyi

| AA

AMAMGG
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum turgidum

| AA

BB
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum aestivum

| AA

BBDD
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Triticum timopheevii

| AA

GG
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Aegilops cylindrica

| CC

DD
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Stenostachys sp.

| HH

WW
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Elmyus canadensis

| HH

StSt
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Elmyus abolinii

| YY

StSt
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Thinopyrum Vjd =(V/J/D)

| JJ

StStVjdVjd
style="text-align:right; background:#ffefe7;"|

| style="text-align:left; background:#ffefe7;"| Leymus tricoides

| NsNs

XmXm

Triticeae and its sister tribe Bromeae (bromes or cheat grasses) when joined form a sister clade with Poeae and Aveneae (Oats). Inter-generic gene flow characterized these taxa from the early stages. For example, Poeae and Aveneae share a mtDNA genetic marker with barley and 10 other members of Triticeae, whereas all 19 genera of Triticeae bear a wheat marker along with Bromeae.{{cite journal |vauthors=Kubo N, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K | title = Structural and distributional variation of mitochondrial rps2 genes in the tribe Triticeae (Poaceae) | journal = Theor Appl Genet | volume = 110 | issue = 6 | pages = 995–1002 | year = 2005 | pmid = 15754209 | doi = 10.1007/s00122-004-1839-x| s2cid = 20620721 }}

Genera within Triticeae contain diploid, allotetraploid and/or allohexaploid genomes, the capacity to form allopolyploid genomes varies within the tribe. In this tribe, the majority of diploid species tested are closely related to Aegilops, the more distal members (earliest branch points) include Hordeum (Barley), Eremian, Psathyrostachys. The broad distribution of cultivars within the Tribe and the properties of the proteins have implication in the treatment of certain digestive diseases and autoimmune disorders.{{Citation needed|date=July 2013}}

Evolution of the tribe

One of the earliest branches in Triticeae, to Pseudoroegeneria, produces the genome StSt and another Hordeum then genome = HH. Allotetraploid combinations of Pseudoroegeneria and Hordeum and are seen in Elmyus (HHStSt),{{cite journal | author = Mason-Gamer R | title = Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass | journal = Syst Biol | volume = 53 | issue = 1 | pages = 25–37 | year = 2004 | pmid = 14965898 | doi = 10.1080/10635150490424402| doi-access = free }} but also shows introgression from Australian and Agropyron wheatgrasses.{{cite journal |vauthors=Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu B | title = Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences | journal = New Phytol | volume = 170 | issue = 2 | pages = 411–20 | year = 2006 | pmid = 16608465 | doi = 10.1111/j.1469-8137.2006.01665.x| doi-access = free }} Elymus contains mostly Pseudoroegeneria mtDNA.{{cite journal |vauthors=Mason-Gamer R, Orme N, Anderson C | title = Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets | journal = Genome | volume = 45 | issue = 6 | pages = 991–1002 | year = 2002 | pmid = 12502243 | doi = 10.1139/g02-065}}

Many genera and species of Triticeae are allopolyploids, having more chromosomes than seen in typical diploids. Typical allopolyploids are tetraploid or hexaploid, XXYY or XXYYZZ. The creation of polyploid species results from natural random events tolerated by polyploid-capable plants. Natural allopolyploid plants may have selective advantages and some may permit the recombination of distantly related genetic material. Poulard wheat is an example of a stable allotetraploid wheat.{{Cn|date=June 2021}}

The Secale (domesticated rye) may be a very early branch from the goat grass clad (or goat grasses are a branch of early rye grasses), as branch these are almost contemporary with the branching between monoploid wheat and Aegilops tauschii. Studies in Anatolia now suggest Rye (Secale) was cultivated, but not domesticated, prior to the holocene and to evidence for the cultivation of wheat. As climate changed the favorability of Secale declined. At that time other strains of barley and wheat may have been cultivated, but humans did little to change them.{{Cn|date=June 2021}}

Goat grasses and the evolution of bread wheat

=Tetraploidization in wild emmer wheat=

Aegilops appears to be basal to several taxa such as Triticum, Amblyopyrum, and Crithopsis. Certain species such as Aegilops speltoides could potentially represent core variants of the taxa. The generic placement may be more a matter of nomenclature. Genera Aegilops and Triticum are very closely related; as the adjacent image illustrates, the Aegilops species occupy most of the basal branch points in bread wheat evolution indicating that genus Triticum evolved from Aegilops after an estimated 4 million years ago.{{cite journal |vauthors=Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC | title = Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat | journal = Mol Biol Evol | volume = 23 | issue = 7 | pages = 1386–1396 | year = 2006 | pmid = 16675504 | doi = 10.1093/molbev/msl004| doi-access = free }} The divergence of the genomes is followed by allotetraploidization of a speltoid goatgrass x basal wheat species Triticum boeoticum with strains in the middle eastern region giving rise to cultivated emmer wheat.{{cite journal |vauthors=Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F | title = Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting | journal = Science | volume = 278 | issue = 5341 | pages = 1312–1314 | year = 1997 | doi = 10.1126/science.278.5341.1312| bibcode = 1997Sci...278.1312H }}

=Hexaploidization of tetraploid wheat=

[https://web.archive.org/web/20060904204448/http://www.ipgri.cgiar.org/publications/HTMLPublications/47/ch10.htm Hybridization] of tetraploid wheat with Ae. tauschii produced a hulled wheat similar to spelt, suggesting T. spelta is basal. The tauschii species can be subdivided into subspecies tauschii (eastern Turkey to China or Pakistan) and strangulata (Caucasus to S. Caspian, N. Iran). The D genome of bread wheat is closer to A.t. strangulata than A.t. tauschii. It is suggested that Ae. tauschii underwent rapid selective evolution prior to combining with tetraploid wheat.{{Cn|date=June 2021}}

Wild Triticeae use by humans

Intense use of wild Triticeae can be seen in the Levant as early as 23,000 years ago.{{cite journal |vauthors=Weiss E, Wetterstrom W, Nadel D, Bar-Yosef O | title = The broad spectrum revisited: Evidence from plant remains | journal = Proc Natl Acad Sci USA | volume = 101 | issue = 26 | pages = 9551–5 | year = 2004 | pmid = 15210984 | doi = 10.1073/pnas.0402362101 | pmc = 470712| bibcode = 2004PNAS..101.9551W | doi-access = free }} This site, Ohala II (Israel), also shows that Triticeae grains were processed and cooked.{{cite journal |vauthors=Piperno D, Weiss E, Holst I, Nadel D | title = Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis | journal = Nature | volume = 430 | issue = 7000 | pages = 670–3 | year = 2004 | pmid = 15295598 | doi = 10.1038/nature02734| bibcode = 2004Natur.430..670P | s2cid = 4431395 }} Many cultivars appear to have been domesticated in the region of the upper Fertile Crescent, Levant and central Anatolia.{{cite journal |vauthors=Lev-Yadun S, Gopher A, Abbo S | title = The Cradle of Agriculture | journal = Science | volume = 288 | issue = 5471 | pages = 1602–1603 | year = 2000 | doi = 10.1126/science.288.5471.1602 | pmid = 10858140| s2cid = 86661579 }}{{cite journal |vauthors=Weiss E, Kislev ME, Hartmann A | title = (Perspectives-Anthropology:) Autonomous Cultivation Before Domestication | journal = Science | volume = 312 | issue = 5780 | pages = 1608–1610 | year = 2006 | doi = 10.1126/science.1127235 | pmid = 16778044| s2cid = 83125044 }} More recent evidence suggests that cultivation of wheat from emmer's wheat

required a longer period with wild seeding maintaining a presence in archaeological finds.{{cite journal | author = Balter M | title = Seeking Agriculture's Ancient Roots | journal = Science | volume = 316 | pages = 1830–1835 | year = 2007 | doi = 10.1126/science.316.5833.1830 | pmid = 17600193 | issue = 5833| s2cid = 128452153 }}

Pastoral grasses

Triticeae has a pastoral component that some contend goes back to the Neolithic period and is referred to as the [http://www.princeton.edu/~bogucki/mosaic.html Garden Hunting Hypothesis]. In this hypothesis grains could be planted or shared for the purpose of attracting game animals so that they could be hunted close to settlements.{{Cn|date=June 2021}}

Today, rye and other Triticeae cultivars are used to graze animals, particularly cattle. Rye grasses in the New World have been used selectively as fodder, but also to protect grasslands without the introduction of invasive Old World species.{{Cn|date=June 2021}}

Triticeae and health

Glutens (storage proteins) in the Triticeae tribe have been linked to gluten-sensitive diseases. While it was once believed that oats carried similar potentials, recent studies indicate that most oat sensitivity is the result of contamination.{{citation needed|date=June 2016}} Triticeae glutens studies are important in determining the links between gluten and gastrointestinal, allergic, and autoimmune diseases.{{cite journal |vauthors=Silano M, Dessì M, De Vincenzi M, Cornell H |title=In vitro tests indicate that certain varieties of oats may be harmful to patients with coeliac disease |journal=J. Gastroenterol. Hepatol. |volume=22 |issue=4 |pages=528–31 |year=2007 |pmid=17376046 |doi=10.1111/j.1440-1746.2006.04512.x|s2cid=38754601 }} Some of the recently discovered biochemical and immunochemical properties of these proteins suggest they evolved for protection against dedicated or continuous consumption by mammalian seed-eaters.{{cite journal |vauthors=Mamone G, Ferranti P, Rossi M, etal |title=Identification of a peptide from alpha-gliadin resistant to digestive enzymes: Implications for celiac disease |journal= Journal of Chromatography B|volume= 855|issue= 2|year=2007 |pmid=17544966 |doi=10.1016/j.jchromb.2007.05.009 |pages=236–41}}{{cite journal |vauthors=Shan L, Qiao SW, Arentz-Hansen H, etal |title=Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten: Implications for Celiac Sprue |journal=J. Proteome Res. |volume=4 |issue=5 |pages=1732–41 |year=2005 |pmid=16212427 |doi=10.1021/pr050173t |pmc=1343496}} One recent publication even raises doubts about wheat's safety for anyone to eat.{{cite journal |vauthors=Bernardo D, Garrote JA, Fernández-Salazar L, Riestra S, Arranz E |title=Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides |journal=Gut |volume=56 |issue=6 |pages=889–90 |year=2007 |pmid=17519496 |doi=10.1136/gut.2006.118265 |pmc=1954879}} Overlapping properties with regard to food preparation{{clarify|date=June 2016}} have made these proteins much more useful as cereal cultivars, and a balanced perspective suggests a variable tolerance to Triticeae glutens reflects early childhood environment and genetic predisposition.{{cite journal |vauthors=Collin P, Mäki M, Kaukinen K | title = Safe gluten threshold for patients with celiac disease: some patients are more tolerant than others | journal = Am. J. Clin. Nutr. | volume = 86 | issue = 1 | pages = 260; author reply 260–1 | year = 2007 | pmid = 17616789 | doi = 10.1093/ajcn/86.1.260| doi-access = free }}{{cite book | author = Guandalini S | title = Issues in Complementary Feeding | chapter = The influence of gluten: weaning recommendations for healthy children and children at risk for celiac disease | journal = Nestlé Nutrition Workshop Series. Paediatric Programme | volume = 60 | pages = 139–55 | year = 2007 | pmid = 17664902 | doi = 10.1159/000106366 | series = Nestlé Nutrition Workshop Series: Pediatric Program | isbn = 978-3-8055-8283-4 }}{{cite journal |vauthors=Bao F, Yu L, Babu S, etal | title = One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies | journal = J. Autoimmun. | volume = 13 | issue = 1 | pages = 143–8 | year = 1999 | pmid = 10441179 | doi = 10.1006/jaut.1999.0303}}{{cite journal |vauthors=Zubillaga P, Vidales MC, Zubillaga I, Ormaechea V, García-Urkía N, Vitoria JC | title = HLA-DQA1 and HLA-DQB1 genetic markers and clinical presentation in celiac disease | journal = J. Pediatr. Gastroenterol. Nutr. | volume = 34 | issue = 5 | pages = 548–54 | year = 2002 | pmid = 12050583 | doi =10.1097/00005176-200205000-00014 | s2cid = 46271326 | doi-access = free }}

References

{{Reflist|30em}}