Truncated 5-simplexes#Truncated 5-simplex

class=wikitable align=right width=480 style="margin-left:1em;"
align=center

|160px
5-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node}}

|160px
Truncated 5-simplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node}}

|160px
Bitruncated 5-simplex
{{CDD|node|3|node_1|3|node_1|3|node|3|node}}

colspan=3|Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a truncated 5-simplex is a convex uniform 5-polytope, being a truncation of the regular 5-simplex.

There are unique 2 degrees of truncation. Vertices of the truncation 5-simplex are located as pairs on the edge of the 5-simplex. Vertices of the bitruncation 5-simplex are located on the triangular faces of the 5-simplex.

Truncated 5-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"
bgcolor=#e7dcc3 align=center colspan=3|Truncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| t{3,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node_1|3|node3|node|3|node}}
{{CDD
branch_11|3b|nodeb|3b|nodeb|3b|nodeb}}
bgcolor=#e7dcc3|4-faces

|12

|6 {3,3,3}25px
6 t{3,3,3}25px

bgcolor=#e7dcc3|Cells

|45

|30 {3,3}25px
15 t{3,3}25px

bgcolor=#e7dcc3|Faces

|80

|60 {3}
20 {6}

bgcolor=#e7dcc3|Edges

|colspan=2|75

bgcolor=#e7dcc3|Vertices

|colspan=2|30

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px
( )v{3,3}

bgcolor=#e7dcc3|Coxeter group

|colspan=2| A5 [3,3,3,3], order 720

bgcolor=#e7dcc3|Properties

|colspan=2|convex

The truncated 5-simplex has 30 vertices, 75 edges, 80 triangular faces, 45 cells (15 tetrahedral, and 30 truncated tetrahedron), and 12 4-faces (6 5-cell and 6 truncated 5-cells).

= Alternate names =

  • Truncated hexateron (Acronym: tix) (Jonathan Bowers)Klitizing, (x3x3o3o3o - tix)

= Coordinates =

The vertices of the truncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,0,1,2) or of (0,1,2,2,2,2). These coordinates come from facets of the truncated 6-orthoplex and bitruncated 6-cube respectively.

= Images =

{{5-simplex Coxeter plane graphs|t01|150}}

Bitruncated 5-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"
bgcolor=#e7dcc3 align=center colspan=3|bitruncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| 2t{3,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node|3|node_1|3|node_1|3|node|3|node}}
{{CDD
branch_11|3ab|nodes|3b|nodeb}}
bgcolor=#e7dcc3|4-faces

|12

|6 2t{3,3,3}25px
6 t{3,3,3}25px

bgcolor=#e7dcc3|Cells

|60

|45 {3,3}25px
15 t{3,3}25px

bgcolor=#e7dcc3|Faces

|140

|80 {3}25px
60 {6}25px

bgcolor=#e7dcc3|Edges

|colspan=2|150

bgcolor=#e7dcc3|Vertices

|colspan=2|60

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px
{ }v{3}

bgcolor=#e7dcc3|Coxeter group

|colspan=2| A5 [3,3,3,3], order 720

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names =

  • Bitruncated hexateron (Acronym: bittix) (Jonathan Bowers)Klitizing, (o3x3x3o3o - bittix)

= Coordinates =

The vertices of the bitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,2) or of (0,0,1,2,2,2). These represent positive orthant facets of the bitruncated 6-orthoplex, and the tritruncated 6-cube respectively.

= Images =

{{5-simplex Coxeter plane graphs|t12|150}}

Related uniform 5-polytopes

The truncated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

{{Hexateron family}}

Notes

{{Reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3x3o3o3o - tix, o3x3x3o3o - bittix