Truncated 6-cubes#Tritruncated 6-cube
class=wikitable align=right width=400 style="margin-left:1em;" |
align=center valign=top
|100px |100px |100px |rowspan=2 valign=center|100px |
align=center valign=top
|100px |100px |100px |
colspan=4|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a truncated 6-cube (or truncated hexeract) is a convex uniform 6-polytope, being a truncation of the regular 6-cube.
There are 5 truncations for the 6-cube. Vertices of the truncated 6-cube are located as pairs on the edge of the 6-cube. Vertices of the bitruncated 6-cube are located on the square faces of the 6-cube. Vertices of the tritruncated 6-cube are located inside the cubic cells of the 6-cube.
{{TOC left}}
{{-}}
Truncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Truncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Class | B6 polytope |
bgcolor=#e7dcc3|Schläfli symbol | t{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 76 |
bgcolor=#e7dcc3|4-faces | 464 |
bgcolor=#e7dcc3|Cells | 1120 |
bgcolor=#e7dcc3|Faces | 1520 |
bgcolor=#e7dcc3|Edges | 1152 |
bgcolor=#e7dcc3|Vertices | 384 |
bgcolor=#e7dcc3|Vertex figure | 80px ( )v{3,3,3} |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Truncated hexeract (Acronym: tox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/tox.htm (o3o3o3o3x4x - tox)]}}
= Construction and coordinates =
The truncated 6-cube may be constructed by truncating the vertices of the 6-cube at of the edge length. A regular 5-simplex replaces each original vertex.
The Cartesian coordinates of the vertices of a truncated 6-cube having edge length 2 are the permutations of:
:
= Images =
{{6-cube Coxeter plane graphs|t01|150}}
= Related polytopes =
Bitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bitruncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Class | B6 polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | 80px { }v{3,3} |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bitruncated hexeract (Acronym: botox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/botox.htm (o3o3o3x3x4o - botox)]}}
= Construction and coordinates =
The Cartesian coordinates of the vertices of a bitruncated 6-cube having edge length 2 are the permutations of:
:
= Images =
{{6-cube Coxeter plane graphs|t12|150}}
= Related polytopes =
The bitruncated 6-cube is fourth in a sequence of bitruncated hypercubes:
{{Bitruncated hypercube polytopes}}
Tritruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Tritruncated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Class | B6 polytope |
bgcolor=#e7dcc3|Schläfli symbol | 3t{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | 80px {3}v{4}{{cite web |url=https://bendwavy.org/klitzing/incmats/squete.htm |title=squete}} 5D polytope (polyteron) |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Tritruncated hexeract (Acronym: xog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/xog.htm (o3o3x3x3o4o - xog)]}}
= Construction and coordinates =
The Cartesian coordinates of the vertices of a tritruncated 6-cube having edge length 2 are the permutations of:
:
= Images =
{{6-cube Coxeter plane graphs|t23|150}}
Related polytopes
{{2-isotopic_uniform_hypercube_polytopes}}
The table below contains a set of 63 Uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3o3o3o3x4x - tox, o3o3o3x3x4o - botox, o3o3x3x3o4o - xog {{sfn whitelist| CITEREFKlitzing}}
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}