Truncated 6-cubes#Tritruncated 6-cube

class=wikitable align=right width=400 style="margin-left:1em;"
align=center valign=top

|100px
6-cube
{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}

|100px
Truncated 6-cube
{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}}

|100px
Bitruncated 6-cube
{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node}}

|rowspan=2 valign=center|100px
Tritruncated 6-cube
{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node}}

align=center valign=top

|100px
6-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node|3|node_1}}

|100px
Truncated 6-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node_1|3|node_1}}

|100px
Bitruncated 6-orthoplex
{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node}}

colspan=4|Orthogonal projections in B6 Coxeter plane

In six-dimensional geometry, a truncated 6-cube (or truncated hexeract) is a convex uniform 6-polytope, being a truncation of the regular 6-cube.

There are 5 truncations for the 6-cube. Vertices of the truncated 6-cube are located as pairs on the edge of the 6-cube. Vertices of the bitruncated 6-cube are located on the square faces of the 6-cube. Vertices of the tritruncated 6-cube are located inside the cubic cells of the 6-cube.

{{TOC left}}

{{-}}

Truncated 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Truncated 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|ClassB6 polytope
bgcolor=#e7dcc3|Schläfli symbolt{4,3,3,3,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}}
bgcolor=#e7dcc3|5-faces76
bgcolor=#e7dcc3|4-faces464
bgcolor=#e7dcc3|Cells1120
bgcolor=#e7dcc3|Faces1520
bgcolor=#e7dcc3|Edges1152
bgcolor=#e7dcc3|Vertices384
bgcolor=#e7dcc3|Vertex figure80px
( )v{3,3,3}
bgcolor=#e7dcc3|Coxeter groupsB6, [3,3,3,3,4]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Truncated hexeract (Acronym: tox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/tox.htm (o3o3o3o3x4x - tox)]}}

= Construction and coordinates =

The truncated 6-cube may be constructed by truncating the vertices of the 6-cube at 1/(\sqrt{2}+2) of the edge length. A regular 5-simplex replaces each original vertex.

The Cartesian coordinates of the vertices of a truncated 6-cube having edge length 2 are the permutations of:

:\left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right)

= Images =

{{6-cube Coxeter plane graphs|t01|150}}

= Related polytopes =

The truncated 6-cube, is fifth in a sequence of truncated hypercubes:

{{Truncated hypercube polytopes}}

Bitruncated 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Bitruncated 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|ClassB6 polytope
bgcolor=#e7dcc3|Schläfli symbol2t{4,3,3,3,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3|Vertex figure80px
{ }v{3,3}
bgcolor=#e7dcc3|Coxeter groupsB6, [3,3,3,3,4]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Bitruncated hexeract (Acronym: botox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/botox.htm (o3o3o3x3x4o - botox)]}}

= Construction and coordinates =

The Cartesian coordinates of the vertices of a bitruncated 6-cube having edge length 2 are the permutations of:

:\left(0,\ \pm1,\ \pm2,\ \pm2,\ \pm2,\ \pm2 \right)

= Images =

{{6-cube Coxeter plane graphs|t12|150}}

= Related polytopes =

The bitruncated 6-cube is fourth in a sequence of bitruncated hypercubes:

{{Bitruncated hypercube polytopes}}

Tritruncated 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Tritruncated 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|ClassB6 polytope
bgcolor=#e7dcc3|Schläfli symbol3t{4,3,3,3,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3|Vertex figure80px
{3}v{4}{{cite web |url=https://bendwavy.org/klitzing/incmats/squete.htm |title=squete}} 5D polytope (polyteron)
bgcolor=#e7dcc3|Coxeter groupsB6, [3,3,3,3,4]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Tritruncated hexeract (Acronym: xog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/xog.htm (o3o3x3x3o4o - xog)]}}

= Construction and coordinates =

The Cartesian coordinates of the vertices of a tritruncated 6-cube having edge length 2 are the permutations of:

:\left(0,\ 0,\ \pm1,\ \pm2,\ \pm2,\ \pm2 \right)

= Images =

{{6-cube Coxeter plane graphs|t23|150}}

Related polytopes

{{2-isotopic_uniform_hypercube_polytopes}}

The table below contains a set of 63 Uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

{{Hexeract family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3o3o3o3x4x - tox, o3o3o3x3x4o - botox, o3o3x3x3o4o - xog {{sfn whitelist| CITEREFKlitzing}}