Truncated 6-simplexes#Bitruncated 6-simplex
class=wikitable align=right style="margin-left:1em;" |
align=center
|150px |150px |
align=center
|150px |150px |
colspan=3|Orthogonal projections in A7 Coxeter plane |
---|
In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex.
There are unique 3 degrees of truncation. Vertices of the truncation 6-simplex are located as pairs on the edge of the 6-simplex. Vertices of the bitruncated 6-simplex are located on the triangular faces of the 6-simplex. Vertices of the tritruncated 6-simplex are located inside the tetrahedral cells of the 6-simplex.
{{clear}}
Truncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Truncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Class | A6 polytope |
bgcolor=#e7dcc3|Schläfli symbol | t{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node}} {{CDD|branch_11|3b|nodeb|3b|nodeb|3b|nodeb|3b|nodeb}} |
bgcolor=#e7dcc3|5-faces | 14: 7 {3,3,3,3} 30px 7 t{3,3,3,3} 30px |
bgcolor=#e7dcc3|4-faces | 63: 42 {3,3,3} 30px 21 t{3,3,3} 30px |
bgcolor=#e7dcc3|Cells | 140: 105 {3,3} 30px 35 t{3,3} 30px |
bgcolor=#e7dcc3|Faces | 175: 140 {3} 35 {6} |
bgcolor=#e7dcc3|Edges | 126 |
bgcolor=#e7dcc3|Vertices | 42 |
bgcolor=#e7dcc3|Vertex figure | 60px ( )v{3,3,3} |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Dual | ? |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Truncated heptapeton (Acronym: til) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/til.htm (o3x3o3o3o3o - til)]}}
= Coordinates =
The vertices of the truncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,2). This construction is based on facets of the truncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t01|150}}
{{-}}
Bitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Class | A6 polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node}} {{CDD|branch_11|3ab|nodes|3b|nodeb|3b|nodeb}} |
bgcolor=#e7dcc3|5-faces | 14 |
bgcolor=#e7dcc3|4-faces | 84 |
bgcolor=#e7dcc3|Cells | 245 |
bgcolor=#e7dcc3|Faces | 385 |
bgcolor=#e7dcc3|Edges | 315 |
bgcolor=#e7dcc3|Vertices | 105 |
bgcolor=#e7dcc3|Vertex figure | 60px { }v{3,3} |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bitruncated heptapeton (Acronym: batal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/batal.htm (o3x3x3o3o3o - batal)]}}
= Coordinates =
The vertices of the bitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t12|150}}
Tritruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Tritruncated 6-simplex | |||
bgcolor=#e7dcc3|Type | uniform 6-polytope | ||
bgcolor=#e7dcc3|Class | A6 polytope | ||
bgcolor=#e7dcc3|Schläfli symbol | 3t{3,3,3,3,3} | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD | node|3|node | 3|node_1|3|node_1|3|node|3|node}} or {{CDD|branch_11|3ab|nodes|3ab|nodes}} |
bgcolor=#e7dcc3|5-faces | 14 2t{3,3,3,3} | ||
bgcolor=#e7dcc3|4-faces | 84 | ||
bgcolor=#e7dcc3|Cells | 280 | ||
bgcolor=#e7dcc3|Faces | 490 | ||
bgcolor=#e7dcc3|Edges | 420 | ||
bgcolor=#e7dcc3|Vertices | 140 | ||
bgcolor=#e7dcc3|Vertex figure | 60px {3}v{3} | ||
bgcolor=#e7dcc3|Coxeter group | A6, | ||
bgcolor=#e7dcc3|Properties | convex, isotopic |
The tritruncated 6-simplex is an isotopic uniform polytope, with 14 identical bitruncated 5-simplex facets.
The tritruncated 6-simplex is the intersection of two 6-simplexes in dual configuration: {{CDD|branch|3ab|nodes|3ab|nodes_10l}} and {{CDD|branch|3ab|nodes|3ab|nodes_01l}}.
= Alternate names =
- Tetradecapeton (as a 14-facetted 6-polytope) (Acronym: fe) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/fe.htm (o3o3x3x3o3o - fe)]}}
= Coordinates =
The vertices of the tritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,2,2). This construction is based on facets of the bitruncated 7-orthoplex. Alternately it can be centered on the origin as permutations of (-1,-1,-1,0,1,1,1).
= Images =
{{6-simplex2 Coxeter plane graphs|t23|150}}
= Related polytopes =
{{Isotopic uniform simplex polytopes}}
Related uniform 6-polytopes
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.
{{Heptapeton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3x3o3o3o3o - til, o3x3x3o3o3o - batal, o3o3x3x3o3o - fe {{sfn whitelist| CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}