Truncated 7-simplexes#Bitruncated 7-simplex
{{Short description|Uniform 7-polytope}}
class=wikitable style="float:right; margin-left:8px" |
align=center
|180px |180px |
align=center
|180px |180px |
colspan=3|Orthogonal projections in A7 Coxeter plane |
---|
In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.
There are unique 3 degrees of truncation. Vertices of the truncation 7-simplex are located as pairs on the edge of the 7-simplex. Vertices of the bitruncated 7-simplex are located on the triangular faces of the 7-simplex. Vertices of the tritruncated 7-simplex are located inside the tetrahedral cells of the 7-simplex.
{{-}}
Truncated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Truncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t{3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | 16 |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | 350 |
style="background:#e7dcc3;"|Faces | 336 |
style="background:#e7dcc3;"|Edges | 196 |
style="background:#e7dcc3;"|Vertices | 56 |
style="background:#e7dcc3;"|Vertex figure | ( )v{3,3,3,3} |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex, Vertex-transitive |
In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.
= Alternate names =
- Truncated octaexon (Acronym: toc) (Jonathan Bowers)Klitizing, (x3x3o3o3o3o3o - toc)
= Coordinates =
The vertices of the truncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t01|150}}
Bitruncated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | 2t{3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 588 |
style="background:#e7dcc3;"|Vertices | 168 |
style="background:#e7dcc3;"|Vertex figure | { }v{3,3,3} |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex, Vertex-transitive |
= Alternate names =
- Bitruncated octaexon (acronym: bittoc) (Jonathan Bowers)Klitizing, (o3x3x3o3o3o3o - roc)
= Coordinates =
The vertices of the bitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t12|150}}
Tritruncated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Tritruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | 3t{3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 980 |
style="background:#e7dcc3;"|Vertices | 280 |
style="background:#e7dcc3;"|Vertex figure | {3}v{3,3} |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex, Vertex-transitive |
= Alternate names =
- Tritruncated octaexon (acronym: tattoc) (Jonathan Bowers)Klitizing, (o3o3x3x3o3o3o - tattoc)
= Coordinates =
The vertices of the tritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t23|150}}
Related polytopes
These three polytopes are from a set of 71 uniform 7-polytopes with A7 symmetry.
{{Octaexon family}}
See also
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} x3x3o3o3o3o3o - toc, o3x3x3o3o3o3o - roc, o3o3x3x3o3o3o - tattoc
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}