Truncated 8-cubes#Truncated 8-cube
{{Short description|Convex uniform 8-polytope in 8-dimensional geometry}}
class=wikitable align=right width=300 style="margin-left:1em;" |
align=center valign=top
|100px |100px |100px |
align=center valign=top
|100px |100px |100px |
align=center valign=top
|100px |100px |100px |
colspan=5|Orthogonal projections in B8 Coxeter plane |
---|
In eight-dimensional geometry, a truncated 8-cube is a convex uniform 8-polytope, being a truncation of the regular 8-cube.
There are unique 7 degrees of truncation for the 8-cube. Vertices of the truncation 8-cube are located as pairs on the edge of the 8-cube. Vertices of the bitruncated 8-cube are located on the square faces of the 8-cube. Vertices of the tritruncated 7-cube are located inside the cubic cells of the 8-cube. The final truncations are best expressed relative to the 8-orthoplex.
{{TOC left}}
{{-}}
Truncated 8-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Truncated 8-cube | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t{4,3,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | ( )v{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter groups | B8, [3,3,3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Truncated octeract (acronym tocto) (Jonathan Bowers)Klitizing, (o3o3o3o3o3o3x4x – tocto)
= Coordinates =
Cartesian coordinates for the vertices of a truncated 8-cube, centered at the origin, are all 224 vertices are sign (4) and coordinate (56) permutations of
: (±2,±2,±2,±2,±2,±2,±1,0)
= Images =
{{8-cube Coxeter plane graphs|t01|200}}
= Related polytopes =
Bitruncated 8-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bitruncated 8-cube | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t{4,3,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | { }v{3,3,3,3} |
bgcolor=#e7dcc3|Coxeter groups | B8, [3,3,3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bitruncated octeract (acronym bato) (Jonathan Bowers)Klitizing, (o3o3o3o3o3x3x4o – bato)
= Coordinates =
Cartesian coordinates for the vertices of a truncated 8-cube, centered at the origin, are all the sign coordinate permutations of
: (±2,±2,±2,±2,±2,±1,0,0)
= Images =
{{8-cube Coxeter plane graphs|t12|200}}
= Related polytopes =
The bitruncated 8-cube is sixth in a sequence of bitruncated hypercubes:
{{Bitruncated hypercube polytopes}}
Tritruncated 8-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Tritruncated 8-cube | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 3t{4,3,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | {4}v{3,3,3} |
bgcolor=#e7dcc3|Coxeter groups | B8, [3,3,3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Tritruncated octeract (acronym tato) (Jonathan Bowers)Klitizing, (o3o3o3o3x3x3o4o – tato)
= Coordinates =
Cartesian coordinates for the vertices of a truncated 8-cube, centered at the origin, are all the sign coordinate permutations of
: (±2,±2,±2,±2,±1,0,0,0)
= Images =
{{8-cube Coxeter plane graphs|t23|200}}
Quadritruncated 8-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Quadritruncated 8-cube | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 4t{3,3,3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}} {{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node|split1|nodes}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | {3,4}v{3,3} |
bgcolor=#e7dcc3|Coxeter groups | B8, [3,3,3,3,3,3,4] D8, [35,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Quadritruncated octeract (acronym oke) (Jonathan Bowers)Klitizing, (o3o3o3x3x3o3o4o – oke)
= Coordinates =
Cartesian coordinates for the vertices of a bitruncated 8-orthoplex, centered at the origin, are all sign and coordinate permutations of
: (±2,±2,±2,±2,±1,0,0,0)
= Images =
{{8-cube Coxeter plane graphs|t34|200}}
= Related polytopes=
{{2-isotopic_uniform_hypercube_polytopes}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} o3o3o3o3o3o3x4x – tocto, o3o3o3o3o3x3x4o – bato, o3o3o3o3x3x3o4o – tato, o3o3o3x3x3o3o4o – oke
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}