Truncated order-4 pentagonal tiling

{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U54_01}}

In geometry, the truncated order-4 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,4}.

Uniform colorings

A half symmetry [1+,4,5] = [5,5] coloring can be constructed with two colors of decagons. This coloring is called a truncated pentapentagonal tiling.

:240px

Symmetry

There is only one subgroup of [5,5], [5,5]+, removing all the mirrors. This symmetry can be doubled to 542 symmetry by adding a bisecting mirror.

class=wikitable

|+ Small index subgroups of [5,5]

align=center

!Type

!Reflective domains

!Rotational symmetry

align=center

!Index

!1

!2

align=center

!Diagram

|160px

|160px

align=center

!Coxeter
(orbifold)

|[5,5] = {{CDD|node_c1|5|node_c1|5|node_c1}} = {{CDD|node_c1|split1-55|branch_c1|label2}}
(*552)

|[5,5]+ = {{CDD|node_h2|5|node_h2|5|node_h2}} = {{CDD|node_h2|split1-55|branch_h2h2|label2}}
(552)

Related polyhedra and tiling

{{Truncated_figure3_table}}

{{Order 5-4 tiling table}}

{{Order 5-5 tiling table}}

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}

See also

{{Commonscat|Uniform tiling 4-10-10}}