Truncated rhombicosidodecahedron

{{Short description|Type of polyhedron}}

class="wikitable" bgcolor="#ffffff" cellpadding="5" align="right" style="margin-left:10px" width="240"

!bgcolor=#e7dcc3 colspan=2|Truncated rhombicosidodecahedron

colspan=2 align=center|File:Truncated_small_rhombicosidodecahedron.png
bgcolor=#e7dcc3|Schläfli symboltrr{5,3} = tr\begin{Bmatrix} 5 \\ 3 \end{Bmatrix}
bgcolor=#e7dcc3|Conway notationtaD = baD
bgcolor=#e7dcc3|Faces122:
60 {4}
20 {6}
30 {8}
12 {10}
bgcolor=#e7dcc3|Edges360
bgcolor=#e7dcc3|Vertices240
bgcolor=#e7dcc3|Symmetry groupIh, [5,3], (*532) order 120
bgcolor=#e7dcc3|Rotation groupI, [5,3]+, (532), order 60
bgcolor=#e7dcc3|Dual polyhedronDisdyakis hexecontahedron
80px
bgcolor=#e7dcc3|Propertiesconvex

In geometry, the truncated rhombicosidodecahedron is a polyhedron, constructed as a truncated rhombicosidodecahedron. It has 122 faces: 12 decagons, 30 octagons, 20 hexagons, and 60 squares.

Other names

  • Truncated small rhombicosidodecahedron
  • Beveled icosidodecahedron

Zonohedron

As a zonohedron, it can be constructed with all but 30 octagons as regular polygons. It is 2-uniform, with 2 sets of 120 vertices existing on two distances from its center.

This polyhedron represents the Minkowski sum of a truncated icosidodecahedron, and a rhombic triacontahedron.Eppstein (1996)

Related polyhedra

The truncated icosidodecahedron is similar, with all regular faces, and 4.6.10 vertex figure. Also see the [https://levskaya.github.io/polyhedronisme/?recipe=beD&palette=%23ff0000%20%23ffee00%20%230000ff%20%2300ff00%20%2300ddff%20%23ff00ff truncated rhombirhombicosidodecahedron].

class=wikitable
align=center

!truncated icosidodecahedron

!Truncated rhombicosidodecahedron

align=center

|160px
4.6.10

|160px
4.8.10 and 4.6.8

The truncated rhombicosidodecahedron can be seen in sequence of rectification and truncation operations from the icosidodecahedron. A further alternation step leads to the snub rhombicosidodecahedron.

class=wikitable

!Name

!valign=bottom|Icosidodeca-
hedron

!Rhomb-
icosidodeca-
hedron

!Truncated rhomb-
icosidodeca-
hedron

!Snub rhomb-
icosidodeca-
hedron

align=center

!Coxeter

!ID (rD)

!rID (rrD)

!trID (trrD)

!srID (htrrD)

align=center

!Conway

!aD

!aaD = eD

!taaD = baD

![https://levskaya.github.io/polyhedronisme/?recipe=saD&palette=%230000ff%20%23ffee00%20%23ff0000 saD]

align=center

!Image

|100px

|100px

|100px

|100px

align=center

!Conway

!jD

!oD

!maD

!gaD

align=center

!Dual

|100px

|100px

|100px

|100px

See also

References

{{reflist}}

  • {{cite journal

| author = Eppstein, David

| authorlink = David Eppstein

| year = 1996

| title = Zonohedra and zonotopes

| journal = Mathematica in Education and Research

| volume = 5

| issue = 4

| pages = 15–21

| url = http://www.ics.uci.edu/~eppstein/junkyard/ukraine/ukraine.html}}