Truncated triapeirogonal tiling

{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|Ui3_012}}

In geometry, the truncated triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of tr{∞,3}.

Symmetry

File:Truncated_triapeirogonal_tiling_with_mirrors.png

The dual of this tiling represents the fundamental domains of [∞,3], *∞32 symmetry. There are 3 small index subgroup constructed from [∞,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

A special index 4 reflective subgroup, is [(∞,∞,3)], (*∞∞3), and its direct subgroup [(∞,∞,3)]+, (∞∞3), and semidirect subgroup [(∞,∞,3+)], (3*∞).Norman W. Johnson and Asia Ivic Weiss, Quadratic Integers and Coxeter Groups, Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336 [http://cms.math.ca/cjm/v51/weisscox8.pdf] Given [∞,3] with generating mirrors {0,1,2}, then its index 4 subgroup has generators {0,121,212}.

An index 6 subgroup constructed as [∞,3*], becomes [(∞,∞,∞)], (*∞∞∞).

class=wikitable

|+ Small index subgroups of [∞,3], (*∞32)

align=center
align=center

!Index

!1

!colspan=2|2

!3

!4

!colspan=2|6

!8

!12

!24

align=center

!Diagrams

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

!Coxeter
(orbifold)

|[∞,3]
{{CDD|node_c1|infin|node_c2|3|node_c2}} = {{CDD|node_c2|split1-i3|branch_c1-2|label2}}
(*∞32)

|[1+,∞,3]
{{CDD|node_h0|infin|node_c2|3|node_c2}} = {{CDD|labelinfin|branch_c2|split2|node_c2}}
(*∞33)

|[∞,3+]
{{CDD|node_c1|infin|node_h2|3|node_h2}}
(3*∞)

|[∞,∞]

(*∞∞2)

|[(∞,∞,3)]

(*∞∞3)

|[∞,3*]
{{CDD|node_c1|infin|node_g|3sg|node_g}} = {{CDD|labelinfin|branch_c1|split2-ii|node_c1}}
(*∞3)

|[∞,1+,∞]

(*(∞2)2)

|[(∞,1+,∞,3)]

(*(∞3)2)

|[1+,∞,∞,1+]

(*∞4)

|[(∞,∞,3*)]

(*∞6)

align=center

!colspan=11|Direct subgroups

align=center

!Index

!2

!colspan=2|4

!6

!8

!colspan=2|12

!16

!24

!48

align=center

!Diagrams

|80px

|colspan=2|80px

|80px

|80px

|80px

|80px

|80px

|80px

|80px

align=center

!Coxeter
(orbifold)

|[∞,3]+
{{CDD|node_h2|infin|node_h2|3|node_h2}} = {{CDD|node_h2|split1-i3|branch_h2h2|label2}}
(∞32)

|colspan=2|[∞,3+]+
{{CDD|node_h0|infin|node_h2|3|node_h2}} = {{CDD|labelinfin|branch_h2h2|split2|node_h2}}
(∞33)

|[∞,∞]+

(∞∞2)

|[(∞,∞,3)]+

(∞∞3)

|[∞,3*]+
{{CDD|node_h2|infin|node_g|3sg|node_g}} = {{CDD|labelinfin|branch_h2h2|split2-ii|node_h2}}
(∞3)

|[∞,1+,∞]+

(∞2)2

|[(∞,1+,∞,3)]+

(∞3)2

|[1+,∞,∞,1+]+

(∞4)

|[(∞,∞,3*)]+

(∞6)

Related polyhedra and tiling

{{Order i-3 tiling table}}

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram {{CDD|node_1|p|node_1|3|node_1}}. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

{{Omnitruncated table}}

See also

References

{{reflist}}

{{refbegin}}

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}

{{refend}}