Type I supergravity#Algebra

{{Short description|Ten-dimensional supergravity}}

In supersymmetry, type I supergravity is the theory of supergravity in ten dimensions with a single supercharge. It consists of a single supergravity multiplet and a single Yang–Mills multiplet. The full non-abelian action was first derived in 1983 by George Chapline and Nicholas Manton.{{cite journal|last1=Chapline|first1=G.F.|authorlink1=George Chapline Jr.|last2=Manton|first2=N.S.|authorlink2=Nicholas Manton|date=1983|title=Unification of Yang–Mills theory and supergravity in ten dimensions|url=https://dx.doi.org/10.1016/0370-2693%2883%2990633-0|journal=Physics Letters B|volume=120|issue=1–3|pages=105–109|doi=10.1016/0370-2693(83)90633-0|pmid=|arxiv=|bibcode=1983PhLB..120..105C |s2cid=|access-date=|url-access=subscription}} Classically the theory can admit any gauge group, but a consistent quantum theory resulting in anomaly cancellation only exists if the gauge group is either \text{SO}(32) or E_8\times E_8. Both these supergravities are realised as the low-energy limits of string theories, in particular of type I string theory and of the two heterotic string theories.

History

Supergravity was much studied during the 1980s as a candidate theory of nature. As part of this it was important to understand the various supergravities that can exist in different dimensions, with the possible supergravities being classified in 1978 by Werner Nahm.{{cite journal|last1=Nahm|first1=W.|authorlink1=Werner Nahm|date=1978|title=Supersymmetries and their representations|url=https://dx.doi.org/10.1016/0550-3213%2878%2990218-3|journal=Nuclear Physics B|volume=135|issue=1|pages=149–166|doi=10.1016/0550-3213(78)90218-3|pmid=|arxiv=|bibcode=1978NuPhB.135..149N |s2cid=|access-date=}} Type I supergravity was first written down in 1983, with Eric Bergshoeff, Mees de Roo, Bernard de Wit, and Peter van Nieuwenhuizen describing the abelian theory,{{cite journal|last1=Bergshoeff|first1=E.|authorlink1=|last2=De Roo|first2=M.|authorlink2=|last3=De Wit|first3=B.|authorlink3=Bernard de Wit|last4=Van Nieuwenhuizen|first4=P.|authorlink4=Peter van Nieuwenhuizen|date=1982|title=Ten-dimensional Maxwell-Einstein supergravity, its currents, and the issue of its auxiliary fields|url=https://dx.doi.org/10.1016/0550-3213%2882%2990050-5|journal=Nuclear Physics B|volume=195|issue=1|pages=97–136|doi=10.1016/0550-3213(82)90050-5|pmid=|arxiv=|s2cid=|access-date=}} and then George Chapline and Nicholas Manton extending this to the full non-abelian theory. An important development was made by Michael Green and John Schwarz in 1984 when they showed that only a handful of these theories are anomaly free,{{cite journal|last1=Green|first1=M.B.|authorlink1=Michael Green (physicist)|last2=Schwarz|first2=J.H.|authorlink2=John Henry Schwarz|date=1984|title=Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory|url=https://dx.doi.org/10.1016/0370-2693%2884%2991565-X|journal=Physics Letters B|volume=149|issue=1–3|pages=117–122|doi=10.1016/0370-2693(84)91565-X|pmid=|arxiv=|s2cid=|access-date=|url-access=subscription}} with additional work showing that only \text{SO}(32) and E_8\times E_8 result in a consistent quantum theory.{{cite journal|last1=Adams|first1=Allan|authorlink1=Allan Adams|last2=DeWolfe|first2=O.|authorlink2=|last3=Taylor|first3=W.|authorlink3=|date=2010|title=String universality in ten dimensions|url=|journal=Phys. Rev. Lett.|volume=105|issue=7|pages=071601|doi=10.1103/PhysRevLett.105.071601|pmid=20868028|arxiv=1006.1352|bibcode=2010PhRvL.105g1601A |s2cid=|access-date=}} The first case was known at the time to correspond to the low-energy limit of type I superstrings. Heterotic string theories were discovered the next year,{{cite journal|last1=Gross|first1=D.J.|authorlink1=David Gross|last2=Harvey|first2=J.A.|authorlink2=Jeffrey A. Harvey|last3=Martinec|first3=M.|authorlink3=Emil Martinec|last4=Rohm|first4=R.|authorlink4=Ryan Rohm|date=1986|title=Heterotic string theory: (II). The interacting heterotic string|url=https://dx.doi.org/10.1016/0550-3213%2886%2990146-X|journal=Nuclear Physics B|volume=267|issue=1|pages=75–124|doi=10.1016/0550-3213(86)90146-X|pmid=|arxiv=|bibcode=1986NuPhB.267...75G |s2cid=|access-date=|url-access=subscription}} with these having a low-energy limit described by type I supergravity with both gauge groups.

Theory

Type I supergravity is the ten-dimensional supergravity with a single MajoranaWeyl spinor supercharge.{{refn|group=nb|This supergravity is sometimes written as \mathcal N=(1,0) or \mathcal N=(0,1) supergravity to indicate the chirality of the supercharge, with these two theories being equivalent up to a chirality transformation.}} Its field content consists of the \mathcal N=1 supergravity supermultiplet (g_{\mu\nu}, \psi_\mu, B, \lambda, \phi), together with the \mathcal N=1 Yang–Mills supermultiplet (A_\mu^a, \chi^a) with some associated gauge group.{{cite book|last1=Dall'Agata|first1=G.|author-link1=|last2=Zagermann|first2=M.|author-link2=|date=2021|title=Supergravity: From First Principles to Modern Applications|url=|doi=|location=|publisher=Springer|chapter=|page=|isbn=978-3662639788}}{{rp|271}} Here g_{\mu\nu} is the metric, B is the two-form Kalb–Ramond field, \phi is the dilaton, and A_\mu^a is a Yang–Mills gauge field.{{cite book|last1=Becker|first1=K.|author-link1=|last2=Becker|first2=M.|author-link2=Melanie Becker|last3=Schwarz|first3=J.H.|author-link3=John Henry Schwarz|date=2006|title=String Theory and M-Theory: A Modern Introduction|url=|doi=|location=|publisher=Cambridge University Press|chapter=|page=|isbn=978-0521860697}}{{rp|317–318}} Meanwhile, \psi_\mu is the gravitino, \lambda is a dilatino, and \chi^a a gaugino, with all these being Majorana–Weyl spinors. The gravitino and gaugino have the same chirality, while the dilatino has the opposite chirality.

= Algebra =

The superalgebra for type I supersymmetry is given by{{cite book|last=Townsend|first=P.K.|author-link=Paul Townsend|date=1995|title=The World in Eleven Dimensions Supergravity, supermembranes and M-theory|url=|doi=|location=|publisher=CRC Press|chapter=P-Brane Democracy|page=|isbn=978-0750306720}}

:

\{Q_\alpha, Q_\beta\} = (P\gamma^\mu C)_{\alpha \beta}P_\mu + (P\gamma^{\mu\nu\rho\sigma\delta}C)_{\alpha \beta}Z_{\mu\nu\rho\sigma \delta}.

Here Q_\alpha is the supercharge with a fixed chirality PQ_\alpha = Q_\alpha, where P = \tfrac{1}{2}(1\pm \gamma_*) is the relevant projection operator. Meanwhile, C is the charge conjugation operator and \gamma^{\mu} are the gamma matrices. The right-hand side must have the same chirality as the supercharges and must also be symmetric under an exchange of the spinor indices. The second term is the only central charge that is admissible under these constraints up to Poincare duality. This is because in ten dimensions only P\gamma^{\mu_1 \cdots \mu_p}C with p=1 modulo 4 are symmetric matrices.{{cite book|last1=Freedman|first1=D.Z.|author-link1=Daniel Z. Freedman|last2=Van Proeyen|first2=A.|author-link2=|date=2012|title=Supergravity|url=|doi=|location=Cambridge|publisher=Cambridge University Press|chapter=|page=|isbn=978-0521194013}}{{rp|37–48}}{{refn|group=nb|There is no central charge for the first case since it is equivalent to a redefinition P_\mu \sim P_\mu+Z_\mu.}} The central charge corresponds to a 5-brane solution in the supergravity which is dual to the fundamental string in heterotic string theory.{{cite journal|last1=Strominger|first1=A.|authorlink1=|date=1990|title=Heterotic solitons|url=|journal=Nucl. Phys. B|volume=343|issue=|pages=167–184|doi=10.1016/0550-3213(90)90599-9|pmid=|arxiv=|s2cid=|access-date=}}

= Action =

The action for type I supergravity in the Einstein frame is given up to four-fermion terms by{{cite book|last1=Green|first1=M.|author-link1=Michael Green (physicist)|last2=Schwarz|first2=J.H.|author-link2=John Henry Schwarz|last3=Witten|first3=E.|author-link3=Edward Witten|date=1988|title=Superstring Theory: 25th Anniversary Edition: Volume 2|url=|doi=|location=|publisher=Cambridge University Press|chapter=|page=|isbn=978-1107029132}}{{rp|325}}{{refn|group=nb|The fields have been rescaled from Green, Schwartz, Witten, as \phi^{\text{GSW}} = e^\phi, H_{\mu\nu\rho}^{\text{GSW}} = \tfrac{g^2}{\kappa^2}H_{\mu\nu\rho}, B_{\mu\nu}^{\text{GSW}} = \tfrac{g^2}{\kappa^2}B_{\mu\nu}, along with a rescaling of all fermions by a factor of \kappa^{-1}.}}

:

S = \frac{1}{2\kappa^2}\int d^{10} x \ e \bigg[ R -2\partial_\mu \phi \partial^\mu \phi -\tfrac{3}{4} e^{-2\phi}H_{\mu\nu\rho}H^{\mu\nu\rho} - \tfrac{\kappa^2}{2g^2}e^{-\phi}\text{tr}(F_{\mu\nu}F^{\mu\nu})

:

\ \ \ -\bar \psi_\mu \gamma^{\mu\nu\rho}D_\nu \psi_\rho -\bar \lambda \gamma^\mu D_\mu \lambda - \text{tr}(\bar \chi \gamma^\mu D_\mu \chi)

:

\ \ \ -\sqrt 2\bar \psi_\mu \gamma^\nu \gamma^\mu \lambda \partial_\nu \phi + \tfrac{1}{8}e^{-\phi}\text{tr}(\bar \chi \gamma^{\mu\nu\rho}\chi)H_{\mu\nu\rho}

:

\ \ \ -\tfrac{\kappa}{2g}e^{-\phi/2}\text{tr}[\bar \chi \gamma^\mu \gamma^{\nu\rho}(\psi_\mu + \tfrac{\sqrt 2}{12}\gamma_\mu \lambda)F_{\nu\rho}]

:

\ \ \ + \tfrac{1}{8}e^{-\phi}(\bar \psi_\mu \gamma^{\mu\nu\rho\sigma\delta}\psi_\delta + 6 \bar \psi^\nu \gamma^\rho \psi^\sigma - \sqrt 2 \bar \psi_\mu \gamma^{\nu\rho \sigma}\gamma^\mu \lambda)H_{\nu\rho\sigma}\bigg].

Here \kappa^2 is the gravitational coupling constant, \phi is the dilaton, and{{cite book|last=Polchinski|first=J.|author-link=Joseph Polchinski|date=1998|title=String Theory Volume II: Superstring Theory and Beyond|url=|doi=|location=|publisher=Cambridge University Press|chapter=|page=|isbn=978-1551439761}}{{rp|92–93}}

:

H_{\mu\nu\rho} =\partial_{[\mu} B_{\nu\rho]} - \tfrac{\kappa^2}{g^2}\omega_{\text{YM},\mu\nu\rho},

where \omega_{\text{YM}} is the trace of the Yang–Mills Chern–Simons form given by

:

\omega_{\text{YM}} = \text{tr}(A \wedge dA +\tfrac{2}{3}A\wedge A \wedge A).

The non-abelian field strength tensor corresponding to the gauge field A_\mu is denote by F_{\mu\nu}. The spacetime index gamma-matrices are position-dependent fields \gamma_\mu = e_\mu^a \gamma_a. Meanwhile, D_\mu is the covariant derivative D_\mu = \partial_\mu + \tfrac{1}{4}\omega_\mu^{ab}\gamma_{ab}, while \gamma_{ab} = \gamma_a\gamma_b and \omega_\mu^{ab} is the spin connection.

= Supersymmetry transformations =

The supersymmetry transformation rules are given up to three fermion terms by{{rp|324}}

:

\delta e^a{}_\mu = \tfrac{1}{2}\bar \epsilon \gamma^a\psi_\mu,

:

\delta \psi_\mu = D_\mu \epsilon + \tfrac{1}{32}e^{-\phi}(\gamma_\mu{}^{\nu\rho\sigma}-9\delta^\nu_\mu \gamma^{\rho\sigma})\epsilon H_{\nu\rho\sigma},

:

\delta B_{\mu\nu} = \tfrac{1}{2}e^\phi \bar \epsilon (\gamma_\mu \psi_\nu - \gamma_\nu \psi_\mu - \tfrac{1}{\sqrt 2}\gamma_{\mu\nu}\lambda)+\tfrac{\kappa}{g}e^{\phi/2}\bar \epsilon \gamma_{[\mu}\text{tr}(\chi A_{\nu]}),

:

\delta \phi = -\tfrac{1}{2\sqrt 2}\bar \epsilon \lambda,

:

\delta \lambda = -\tfrac{\kappa}{\sqrt 2}{\partial\!\!\!/}\phi + \tfrac{1}{8\sqrt 2}e^{-\phi}\gamma^{\mu\nu\rho}\epsilon H_{\mu\nu\rho},

:

\delta A_\mu^a = \tfrac{g}{2\kappa}e^{\phi/2}\bar \epsilon \gamma_\mu \chi^a,

:

\delta \chi^a = -\tfrac{\kappa}{4g} e^{-\phi/2}\gamma^{\mu\nu}F^a_{\mu\nu}\epsilon.

The supersymmetry parameter is denoted by \epsilon. These transformation rules are useful for constructing the Killing spinor equations and finding supersymmetric ground states.

= Anomaly cancellation =

At a classical level the supergravity has an arbitrary gauge group, however not all gauge groups are consistent at the quantum level.{{rp|98–101}} The Green–Schwartz anomaly cancellation mechanism is used to show when the gauge, mixed, and gravitational anomalies vanish in hexagonal diagrams. In particular, the only anomaly free type I supergravity theories are ones with gauge groups of \text{SO}(32), E_8\times E_8, E_8\times \text{U}(1)^{248}, and \text{U}(1)^{496}. It was later found that the latter two with abelian factors are inconsistent theories of quantum gravity.{{cite journal|last1=Adams|first1=Allan|authorlink1=Allan Adams|last2=DeWolfe|first2=O.|authorlink2=|last3=Taylor|first3=W.|authorlink3=|date=2010|title=String universality in ten dimensions|url=|journal=Phys. Rev. Lett.|volume=105|issue=7|pages=071601|doi=10.1103/PhysRevLett.105.071601|pmid=20868028|arxiv=1006.1352|bibcode=2010PhRvL.105g1601A |s2cid=|access-date=}} The remaining two theories both have ultraviolet completions to string theory, where the corresponding string theories can also be shown to be anomaly free at the string level.

Relation to string theory

Type I supergravity is the low-energy effective field theory of type I string theory and both heterotic string theories. In particular, type I string theory and \text{SO}(32) heterotic string theory reduce to type I supergravity with an \text{SO}(32) gauge group, while E_8\times E_8 heterotic string theory reduces to type I supergravity with an E_8\times E_8 gauge group.{{rp|92–93}} There are additional corrections that the supergravity receives in string theory, notably the Chern–Simons term becomes a linear combination of the Yang–Mills Chern–Simons three-form found at tree-level and a Lorentz Chern–Simons three-form \omega_{\text{YM}}\rightarrow \omega_{\text{YM}}-\omega_{\text{L}}.{{cite book|last=Nath|first=P.|author-link=Pran Nath (physicist)|date=2016|title=Supersymmetry, Supergravity, and Unification|url=|doi=|location=|publisher=Cambridge University Press|chapter=18|pages=420–421|isbn=978-0521197021}} This latter three-form is a higher-derivative correction given by

:

\omega_{\text{L}} = \text{tr}(\omega\wedge d\omega + \tfrac{2}{3}\omega \wedge \omega \wedge \omega)

,

where \omega is the spin connection. To maintain supersymmetry of the action when this term is included, additional higher-derivative corrections must be added to the action up to second order in \kappa.

In type I string theory, the gauge coupling constant is related to the ten-dimensional Yang–Mills coupling constant by g_{YM}^2 = g^2g_s, while the coupling constant is related to the string length l_s = \sqrt{\alpha'} by g^2 = 4\pi(2\pi l_s)^6.{{rp|318}} Meanwhile, in heterotic string theory the gravitational coupling constant is related to the string length by 2\kappa = l_s g.{{rp|108}}

The fields in the Einstein frame are not the same as the fields corresponding to the string states. Instead, one has to transform the action into the various string frames through a Weyl transformation and dilaton redefinition{{rp|93}}

:

\text{Heterotic}: \ \ \ \ \ \ \ \ g_{\mu\nu}=e^{-\phi_h/2}g_{h,\mu\nu}, \ \ \ \ \ \ \phi = \phi_h/2,

:

\text{Type I}: \ \ \ \ \ \ \ \ \ \ \ \ g_{\mu\nu} = e^{-\phi_I/2}g_{I,\mu\nu}, \ \ \ \ \ \ \ \phi = -\phi_I/2.

S-duality between type I string theory and \text{SO}(32) heterotic string theory can be seen at the level of the action since the respective string frame actions are equivalent with the correct field redefinitions.{{cite book|last=Ortin|first=T.|author-link=|date=2015|title=Gravity and Strings|url=|doi=|location=Cambridge|publisher=Cambridge University Press|chapter=|page=702|edition=2|isbn=978-0521768139}} Similarly, Hořava–Witten theory, which describes the duality between E_8\times E_8 heterotic string theory and M-theory, can also be seen at the level of the supergravity since compactification of eleven-dimensional supergravity on S^1/\mathbb Z_2, yields E_8\times E_8 supergravity.

Notes

{{reflist|2|group=nb}}

References

{{Reflist}}

{{Supersymmetry topics}}

{{Quantum field theories}}

{{DEFAULTSORT:Type I supergravity}}

Category:Supersymmetric quantum field theory

Category:Theories of gravity

Category:String theory