Uniform antiprismatic prism#Hexagonal antiprismatic prism

{{Use American English|date = March 2019}}

{{Short description|4-D shape}}

class="wikitable" align="right" style="margin-left:10px" width="250"

|colspan=2 align=center|Set of uniform antiprismatic prisms

bgcolor=#e7dcc3|TypePrismatic uniform 4-polytope
bgcolor=#e7dcc3|Schläfli symbols{2,p}×{}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|2x|p|node_h|2x|node_h|2|node_1}}
{{CDD|node_h|p|node_h|2x|node_h|2|node_1}}
bgcolor=#e7dcc3|Cells2 p-gonal antiprisms,
2 p-gonal prisms and
2p triangular prisms
bgcolor=#e7dcc3|Faces4p {3}, 4p {4} and 4 {p}
bgcolor=#e7dcc3|Edges10p
bgcolor=#e7dcc3|Vertices4p
bgcolor=#e7dcc3|Vertex figure100px
Trapezoidal pyramid
bgcolor=#e7dcc3|Symmetry group[2p,2+,2], order 8p
[(p,2)+,2], order 4p
bgcolor=#e7dcc3|Propertiesconvex if the base is convex

In 4-dimensional geometry, a uniform antiprismatic prism or antiduoprism is a uniform 4-polytope with two uniform antiprism cells in two parallel 3-space hyperplanes, connected by uniform prisms cells between pairs of faces. The symmetry of a p-gonal antiprismatic prism is [2p,2+,2], order 8p.

A p-gonal antiprismatic prism or p-gonal antiduoprism has 2 p-gonal antiprism, 2 p-gonal prism, and 2p triangular prism cells. It has 4p equilateral triangle, 4p square and 4 regular p-gon faces. It has 10p edges, and 4p vertices.

class=wikitable

|+ Example 15-gonal antiprismatic prism

align=center

|250px
Schlegel diagram

|250px
Net

Convex uniform antiprismatic prisms

There is an infinite series of convex uniform antiprismatic prisms, starting with the digonal antiprismatic prism is a tetrahedral prism, with two of the tetrahedral cells degenerated into squares. The triangular antiprismatic prism is the first nondegenerate form, which is also an octahedral prism. The remainder are unique uniform 4-polytopes.

{{Convex_antiprismatic_prisms}}

Star antiprismatic prisms

There are also star forms following the set of star antiprisms, starting with the pentagram {5/2}:

class=wikitable

!Name

!Coxeter
diagram

!Cells

!Image

!Net

Pentagrammic antiprismatic prism
5/2 antiduoprism

|align=center|{{CDD|node_h|5|rat|d2|node_h|2x|node_h|2|node_1}}
{{CDD|node|5|node_h|2x|node_h|2|node_1}}

2 pentagrammic antiprisms
2 pentagrammic prisms
10 triangular prisms
100px100px
Pentagrammic crossed antiprismatic prism
5/3 antiduoprism

|align=center| {{CDD|node_h|5|rat|d3|node_h|2x|node_h|2|node_1}}
{{CDD|node|10|rat|d3|node_h|2x|node_h|2|node_1}}

2 pentagrammic crossed antiprisms
2 pentagrammic prisms
10 triangular prisms
100px100px
align=center

|...

|

|

|

{{-}}

Square antiprismatic prism

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Square antiprismatic prism

bgcolor=#e7dcc3|TypePrismatic uniform 4-polytope
bgcolor=#e7dcc3|Schläfli symbols{2,4}x{}
bgcolor=#e7dcc3|Coxeter-Dynkin{{CDD|node_h|4|node_h|2x|node_h|2|node_1}}
{{CDD|node|8|node_h|2x|node_h|2|node_1}}
bgcolor=#e7dcc3|Cells2 (3.3.3.4)30px
8 (3.4.4)30px
2 4.4.4 30px
bgcolor=#e7dcc3|Faces16 {3}, 20 {4}
bgcolor=#e7dcc3|Edges40
bgcolor=#e7dcc3|Vertices16
bgcolor=#e7dcc3|Vertex figure80px
Trapezoidal pyramid
bgcolor=#e7dcc3|Symmetry group[(4,2)+,2], order 16
[8,2+,2], order 32
bgcolor=#e7dcc3|Propertiesconvex

A square antiprismatic prism or square antiduoprism is a convex uniform 4-polytope. It is formed as two parallel square antiprisms connected by cubes and triangular prisms. The symmetry of a square antiprismatic prism is [8,2+,2], order 32. It has 16 triangle, 16 square and 4 square faces. It has 40 edges, and 16 vertices.

class=wikitable

|+ Square antiprismatic prism

align=center

|250px
Schlegel diagram

|250px
Net

{{-}}

Pentagonal antiprismatic prism

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentagonal antiprismatic prism

bgcolor=#e7dcc3|TypePrismatic uniform 4-polytope
bgcolor=#e7dcc3|Schläfli symbols{2,5}x{}
bgcolor=#e7dcc3|Coxeter-Dynkin{{CDD|node_h|5|node_h|2x|node_h|2|node_1}}
{{CDD|node|10|node_h|2x|node_h|2|node_1}}
bgcolor=#e7dcc3|Cells2 (3.3.3.5) 30px
10 (3.4.4) 30px
2 (4.4.5) 30px
bgcolor=#e7dcc3|Faces20 {3}, 20 {4}, 4 {5}
bgcolor=#e7dcc3|Edges50
bgcolor=#e7dcc3|Vertices20
bgcolor=#e7dcc3|Vertex figure80px
Trapezoidal pyramid
bgcolor=#e7dcc3|Symmetry group[(5,2)+,2], order 20
[10,2+,2], order 40
bgcolor=#e7dcc3|Propertiesconvex

A pentagonal antiprismatic prism or pentagonal antiduoprism is a convex uniform 4-polytope. It is formed as two parallel pentagonal antiprisms connected by cubes and triangular prisms. The symmetry of a pentagonal antiprismatic prism is [10,2+,2], order 40. It has 20 triangle, 20 square and 4 pentagonal faces. It has 50 edges, and 20 vertices.

class=wikitable

|+ Pentagonal antiprismatic prism

align=center

|250px
Schlegel diagram

|250px
Net

{{-}}

Hexagonal antiprismatic prism

class="wikitable" align="right" style="margin-left:10px" width="260"

!bgcolor=#e7dcc3 colspan=2|Hexagonal antiprismatic prism

bgcolor=#e7dcc3|TypePrismatic uniform 4-polytope
bgcolor=#e7dcc3|Schläfli symbols{2,6}x{}
bgcolor=#e7dcc3|Coxeter-Dynkin{{CDD|node_h|6|node_h|2x|node_h|2|node_1}}
{{CDD|node|12|node_h|2x|node_h|2|node_1}}
bgcolor=#e7dcc3|Cells2 (3.3.3.6) 30px
12 (3.4.4) 30px
2 (4.4.6) 30px
bgcolor=#e7dcc3|Faces24 {3}, 24 {4}, 4 {6}
bgcolor=#e7dcc3|Edges60
bgcolor=#e7dcc3|Vertices24
bgcolor=#e7dcc3|Vertex figure80px
Trapezoidal pyramid
bgcolor=#e7dcc3|Symmetry group[(2,6)+,2], order 24
[12,2+,2], order 48
bgcolor=#e7dcc3|Propertiesconvex

A hexagonal antiprismatic prism or hexagonal antiduoprism is a convex uniform 4-polytope. It is formed as two parallel hexagonal antiprisms connected by cubes and triangular prisms. The symmetry of a hexagonal antiprismatic prism is [12,2+,2], order 48. It has 24 triangle, 24 square and 4 hexagon faces. It has 60 edges, and 24 vertices.

class=wikitable

|+ Hexagonal antiprismatic prism

align=center

|250px
Schlegel diagram

|250px
Net

{{-}}

Heptagonal antiprismatic prism

class="wikitable" align="right" style="margin-left:10px" width="270"

!bgcolor=#e7dcc3 colspan=2|Heptagonal antiprismatic prism

bgcolor=#e7dcc3|TypePrismatic uniform 4-polytope
bgcolor=#e7dcc3|Schläfli symbols{2,7}×{}
bgcolor=#e7dcc3|Coxeter-Dynkin{{CDD|node_h|7|node_h|2x|node_h|2|node_1}}
{{CDD|node|14|node_h|2x|node_h|2|node_1}}
bgcolor=#e7dcc3|Cells2 (3.3.3.7) 30px
14 (3.4.4) 30px
2 (4.4.7) 30px
bgcolor=#e7dcc3|Faces28 {3}, 28 {4}, 4 {7}
bgcolor=#e7dcc3|Edges70
bgcolor=#e7dcc3|Vertices28
bgcolor=#e7dcc3|Vertex figure80px
Trapezoidal pyramid
bgcolor=#e7dcc3|Symmetry group[(7,2)+,2], order 28
[14,2+,2], order 56
bgcolor=#e7dcc3|Propertiesconvex

A heptagonal antiprismatic prism or heptagonal antiduoprism is a convex uniform 4-polytope. It is formed as two parallel heptagonal antiprisms connected by cubes and triangular prisms. The symmetry of a heptagonal antiprismatic prism is [14,2+,2], order 56. It has 28 triangle, 28 square and 4 heptagonal faces. It has 70 edges, and 28 vertices.

class=wikitable

|+ Heptagonal antiprismatic prism

align=center

|250px
Schlegel diagram

|250px
Net

{{-}}

Octagonal antiprismatic prism

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e8dcc3 colspan=2|Octagonal antiprismatic prism

bgcolor=#e8dcc3|TypePrismatic uniform 4-polytope
bgcolor=#e8dcc3|Schläfli symbols{2,8}×{}
bgcolor=#e8dcc3|Coxeter-Dynkin{{CDD|node_h|8|node_h|2x|node_h|2|node_1}}
{{CDD|node|16|node_h|2x|node_h|2|node_1}}
bgcolor=#e8dcc3|Cells2 (3.3.3.8) 30px
16 (3.4.4) 30px
2 (4.4.8) 30px
bgcolor=#e8dcc3|Faces32 {3}, 32 {4}, 4 {8}
bgcolor=#e8dcc3|Edges80
bgcolor=#e8dcc3|Vertices32
bgcolor=#e8dcc3|Vertex figure80px
Trapezoidal pyramid
bgcolor=#e8dcc3|Symmetry group[(8,2)+,2], order 32
[16,2+,2], order 64
bgcolor=#e8dcc3|Propertiesconvex

A octagonal antiprismatic prism or octagonal antiduoprism is a convex uniform 4-polytope (four-dimensional polytope). It is formed as two parallel octagonal antiprisms connected by cubes and triangular prisms. The symmetry of an octagonal antiprismatic prism is [16,2+,2], order 64. It has 32 triangle, 32 square and 4 octagonal faces. It has 80 edges, and 32 vertices.

class=wikitable

|+ Octagonal antiprismatic prism

align=center

|250px
Schlegel diagram

|250px
Net

{{-}}

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 26)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)