Universe#cite note-135
{{Short description|Everything in space and time}}
{{Other uses}}
{{pp-semi-indef}}
{{Good article}}
{{Use American English|date=March 2024}}
{{Use mdy dates|date=March 2024}}
{{CS1 config|mode=cs1}}
{{Infobox
| title = Universe
| image = 300px
| caption = The Hubble Ultra-Deep Field image shows some of the most remote galaxies visible to present technology (diagonal is ~1/10 apparent Moon diameter){{cite web |url=http://spacetelescope.org/images/heic0406a/ |title=Hubble sees galaxies galore |work=spacetelescope.org |access-date=April 30, 2017 |archive-date=May 4, 2017 |archive-url=https://web.archive.org/web/20170504043058/http://www.spacetelescope.org/images/heic0406a/ |url-status=live}}
| label1 = Age (within ΛCDM model)
| data1 = 13.787 ± 0.020 billion years
| label2 = Diameter
| data2 = Unknown
Observable universe: {{val|8.8|e=26|u=m}} {{nowrap|(28.5 Gpc or 93 Gly)}}{{cite book |first1=Itzhak |last1=Bars |first2=John |last2=Terning |title=Extra Dimensions in Space and Time |url=https://books.google.com/books?id=fFSMatekilIC&pg=PA27 |access-date=May 1, 2011 |date=2009 |publisher=Springer |isbn=978-0-387-77637-8 |pages=27–}}
| label3 = Mass (ordinary matter)
| data3 = At least {{val|e=53|u=kg}}{{cite book |first=Paul |last=Davies |date=2006 |title=The Goldilocks Enigma |pages=43ff |publisher=First Mariner Books |isbn=978-0-618-59226-5 |url=https://archive.org/details/cosmicjackpotwhy0000davi |url-access=registration}}
| label4 = Average density (with energy)
| label5 = Average temperature (cosmic microwave background)
| data5 = {{val|2.72548|ul=K}}
({{val|-270.4|ul=°C}}, {{val|-454.8|ul=°F}}){{Cite journal |last1=Fixsen |first1=D.J. |date=2009 |title=The Temperature of the Cosmic Microwave Background |journal=The Astrophysical Journal |volume=707 |issue=2 |pages=916–920 |arxiv=0911.1955 |bibcode=2009ApJ...707..916F |doi=10.1088/0004-637X/707/2/916 |s2cid=119217397 |issn=0004-637X}}
| label6 = Main contents
| data6 = Ordinary (baryonic) matter (4.9%)
Dark matter (26.8%)
Dark energy (68.3%)
| label7 = Shape
| data7 = Flat with 0.4% error margin{{cite web |author=NASA/WMAP Science Team |date=January 24, 2014 |url=http://map.gsfc.nasa.gov/universe/uni_shape.html |title=Universe 101: Will the Universe expand forever? |publisher=NASA |access-date=April 16, 2015 |archive-date=March 9, 2008 |archive-url=https://web.archive.org/web/20080309164248/http://map.gsfc.nasa.gov/universe/uni_shape.html |url-status=live}}
}}
The universe is all of space and time{{efn|name=spacetime|According to modern physics, particularly the theory of relativity, space and time are intrinsically linked as spacetime.}} and their contents.{{cite book |title=Introductory Astronomy & Astrophysics |last1=Zeilik |first1=Michael |last2=Gregory |first2=Stephen A. |year=1998 |edition=4th |publisher=Saunders College |quote=The totality of all space and time; all that is, has been, and will be. |isbn=978-0-03-006228-5}} It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from sub-atomic particles to entire galactic filaments. Since the early 20th century, the field of cosmology establishes that space and time emerged together at the Big Bang {{val|13.787|0.020|u=billion years}} ago{{Cite journal |last1=Planck Collaboration |last2=Aghanim |first2=N. |author2-link=Nabila Aghanim |last3=Akrami |first3=Y. |last4=Ashdown |first4=M. |last5=Aumont |first5=J. |last6=Baccigalupi |first6=C. |last7=Ballardini |first7=M. |last8=Banday |first8=A. J. |last9=Barreiro |first9=R. B.|last10=Bartolo|first10=N. |last11=Basak |first11=S. |date=September 2020 |title=Planck 2018 results: VI. Cosmological parameters |journal=Astronomy & Astrophysics |volume=641 |pages=A6 |doi=10.1051/0004-6361/201833910 |arxiv=1807.06209 |bibcode=2020A&A...641A...6P |s2cid=119335614 |issn=0004-6361}} and that the universe has been expanding since then. The portion of the universe that can be seen by humans is approximately 93 billion light-years in diameter at present, but the total size of the universe is not known.{{cite book |first=Brian |last=Greene |author-link=Brian Greene |title=The Hidden Reality |publisher=Alfred A. Knopf |year=2011 |title-link=The Hidden Reality}}
Some of the earliest cosmological models of the universe were developed by ancient Greek and Indian philosophers and were geocentric, placing Earth at the center.{{cite book |title=From China to Paris: 2000 Years Transmission of Mathematical Ideas |first=Yvonne |last=Dold-Samplonius |author-link=Yvonne Dold-Samplonius |year=2002 |publisher=Franz Steiner Verlag}}{{cite book |title=Medieval Science Technology and Medicine: An Encyclopedia |first1=Thomas F. |last1=Glick |first2=Steven |last2=Livesey |first3=Faith |last3=Wallis |publisher=Routledge |year=2005 |isbn=978-0-415-96930-7}} Over the centuries, more precise astronomical observations led Nicolaus Copernicus to develop the heliocentric model with the Sun at the center of the Solar System. In developing the law of universal gravitation, Isaac Newton built upon Copernicus's work as well as Johannes Kepler's laws of planetary motion and observations by Tycho Brahe.
Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the Milky Way, which is one of a few hundred billion galaxies in the observable universe. Many of the stars in a galaxy have planets. At the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and superclusters which form immense filaments and voids in space, creating a vast foam-like structure.{{Cite book |url=https://books.google.com/books?id=RLwangEACAAJ |title=An Introduction to Modern Astrophysics |last1=Carroll |first1=Bradley W. |last2=Ostlie |first2=Dale A. |year=2013 |publisher=Pearson |isbn=978-1-292-02293-2 |edition=International |pages=1173–1174 |access-date=May 16, 2018}} Discoveries in the early 20th century have suggested that the universe had a beginning and has been expanding since then.{{cite book |last=Hawking |first=Stephen |url=https://archive.org/details/briefhistoryofti00step_1 |title=A Brief History of Time |year=1988 |publisher=Bantam |isbn=978-0-553-05340-1 |page=[https://archive.org/details/briefhistoryofti00step_1/page/43 43] |author-link=Stephen Hawking |url-access=registration}}
According to the Big Bang theory, the energy and matter initially present have become less dense as the universe expanded. After an initial accelerated expansion called the inflationary epoch at around 10−32 seconds, and the separation of the four known fundamental forces, the universe gradually cooled and continued to expand, allowing the first subatomic particles and simple atoms to form. Giant clouds of hydrogen and helium were gradually drawn to the places where matter was most dense, forming the first galaxies, stars, and everything else seen today.
From studying the effects of gravity on both matter and light, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter.{{cite web |last1=Redd |first1=Nola |title=What is Dark Matter? |url=https://www.space.com/20930-dark-matter.html |website=Space.com |access-date=February 1, 2018 |archive-date=February 1, 2018 |archive-url=https://web.archive.org/web/20180201075430/https://www.space.com/20930-dark-matter.html |url-status=live}} In the widely accepted ΛCDM cosmological model, dark matter accounts for about {{val|25.8|1.1|u=%}} of the mass and energy in the universe while about {{val|69.2|1.2|u=%}} is dark energy, a mysterious form of energy responsible for the acceleration of the expansion of the universe.{{Cite web |url=https://www.aanda.org/articles/aa/full_html/2016/10/aa27101-15/T9.html |title=Planck 2015 results, table 9 |access-date=May 16, 2018 |archive-date=July 27, 2018 |archive-url=https://web.archive.org/web/20180727024529/https://www.aanda.org/articles/aa/full_html/2016/10/aa27101-15/T9.html |url-status=live}} Ordinary ('baryonic') matter therefore composes only {{val|4.84|0.1|u=%}} of the universe. Stars, planets, and visible gas clouds only form about 6% of this ordinary matter.{{Cite journal |last1=Persic |first1=Massimo |last2=Salucci |first2=Paolo |date=September 1, 1992 |title=The baryon content of the Universe |journal=Monthly Notices of the Royal Astronomical Society |volume=258 |issue=1 |pages=14P–18P |doi=10.1093/mnras/258.1.14P |doi-access=free |issn=0035-8711 |arxiv=astro-ph/0502178 |bibcode=1992MNRAS.258P..14P |s2cid=17945298}}
There are many competing hypotheses about the ultimate fate of the universe and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various multiverse hypotheses, in which the universe might be one among many.{{Cite news |date=August 3, 2011 |title='Multiverse' theory suggested by microwave background |work=BBC News |url=https://www.bbc.com/news/science-environment-14372387 |access-date=February 14, 2023 |archive-date=February 14, 2023 |archive-url=https://web.archive.org/web/20230214233557/https://www.bbc.com/news/science-environment-14372387 |url-status=live}}
{{cosmology}}
Definition
File:NASA-HubbleLegacyFieldZoomOut-20190502.webm – Ultra-Deep Field galaxies to Legacy field zoom out
(video 00:50; May 2, 2019)
The physical universe is defined as all of space and time{{efn|name=spacetime|}} (collectively referred to as spacetime) and their contents. Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.{{cite encyclopedia |title=Universe |encyclopedia=Encyclopaedia Britannica online |date=2012 |url=https://www.britannica.com/science/universe |access-date=February 17, 2018 |archive-date=June 9, 2021 |archive-url=https://web.archive.org/web/20210609004717/https://www.britannica.com/science/universe |url-status=live }}{{cite web |url=http://www.merriam-webster.com/dictionary/Universe |title=Universe |work=Merriam-Webster Dictionary |access-date=September 21, 2012 |archive-date=October 22, 2012 |archive-url=https://web.archive.org/web/20121022182145/http://www.merriam-webster.com/dictionary/universe |url-status=live }}{{cite web |url=http://dictionary.reference.com/browse/Universe?s=t |title=Universe |work=Dictionary.com |access-date=September 21, 2012 |archive-date=October 23, 2012 |archive-url=https://web.archive.org/web/20121023004855/http://dictionary.reference.com/browse/universe?s=t |url-status=live }} The universe also includes the physical laws that influence energy and matter, such as conservation laws, classical mechanics, and relativity.{{cite book|first=Duco A.|last=Schreuder|title=Vision and Visual Perception|url=https://books.google.com/books?id=I7a7BQAAQBAJ&pg=PA135|date=2014|publisher=Archway Publishing|isbn=978-1-4808-1294-9|page=135|access-date=January 27, 2016|archive-date=April 22, 2021|archive-url=https://web.archive.org/web/20210422045606/https://books.google.com/books?id=I7a7BQAAQBAJ&pg=PA135|url-status=live}}
The universe is often defined as "the totality of existence", or everything that exists, everything that has existed, and everything that will exist. In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe.{{refn|1={{cite journal |last=Tegmark |first=Max |title=The Mathematical Universe |journal=Foundations of Physics |volume=38 |issue=2 |pages=101–150 |doi=10.1007/s10701-007-9186-9 |bibcode=2008FoPh...38..101T |arxiv=0704.0646 |year=2008|s2cid=9890455 }} A short version of which is available at {{cite arXiv |eprint=0709.4024 |title=Shut up and calculate|last1=Fixsen|first1=D. J.|class=physics.pop-ph|year=2007}} in reference to David Mermin's famous quote "shut up and calculate!"{{cite journal |title=Could Feynman Have Said This? |first=N. David |last=Mermin |journal=Physics Today |volume=57 |issue=5 |page=10 |date=2004 |doi=10.1063/1.1768652 |bibcode=2004PhT....57e..10M |doi-access= }}}}{{cite book|first=Jim|last=Holt|title=Why Does the World Exist?|publisher=Liveright Publishing |year=2012|page=308}}{{cite book|first=Timothy|last=Ferris|title=The Whole Shebang: A State-of-the-Universe(s) Report|publisher=Simon & Schuster|year=1997|page=400}} The word universe may also refer to concepts such as the cosmos, the world, and nature.{{cite book |title=Creation Out of Nothing: A Biblical, Philosophical, and Scientific Exploration |page=[https://archive.org/details/creationoutofnot0000copa/page/220 220] |first1=Paul |last1=Copan |author2=William Lane Craig |publisher=Baker Academic |date=2004 |isbn=978-0-8010-2733-8 |url=https://archive.org/details/creationoutofnot0000copa/page/220 }}{{cite book|first=Alexander|last=Bolonkin|title=Universe, Human Immortality and Future Human Evaluation|url=https://books.google.com/books?id=TuWQx58ZnPsC&pg=PA3|date=2011|publisher=Elsevier|isbn=978-0-12-415801-6|pages=3–|access-date=January 27, 2016|archive-date=February 8, 2021|archive-url=https://web.archive.org/web/20210208114300/https://books.google.com/books?id=TuWQx58ZnPsC&pg=PA3|url-status=live}}