User:SirMeowMeow

Elements

{{Math theorem

| name = Rank-nullity theorem

| math_statement = The rank-nullity theorem states that for any linear map \Phi : \mathcal{V} \to \mathcal{W} where \mathcal{V} is finite-dimensional, the dimension of \mathcal{V} equals the sum of the map's rank and nullity.{{harvtxt|Axler|2015}} p. 63, § 3.22{{harvtxt|Katznelson|Katznelson|2008}} p. 52, § 2.5.1{{harvtxt|Valenza|1993}} p. 71, § 4.3

\dim \mathcal{V} = \dim \operatorname{img} \Phi + \dim \ker \Phi

\dim \mathcal{V} = \operatorname{rank} \Phi + \operatorname{nullity} \Phi

}}

{{talkquote

| style="padding-top:0.5em;

padding-bottom:0.4em;

margin-top:1em;

background-color: MintCream;"

|Observations

  • One
  • Two
  • Three

Every linear injection has a left-inverse.

\Phi_\mathrm{L}^{-1} = (\Phi^\intercal \Phi)^{-1} \Phi^\intercal

Every linear surjection has a right-inverse.

\Phi_\mathrm{R}^{-1} = \Phi^\intercal (\Phi \Phi^\intercal)^{-1}}}

Commentary

{{Quote box

| quote = There is hardly any theory which is more elementary [than linear algebra], in spite of the fact that generations of professors and textbook writers have obscured its simplicity by preposterous calculations with matrices.

| author = — Jean Dieudonné

| source = Treatise on Analysis, Volume 1

| align = center

}}

{{Quote box

| quote = We share a philosophy about linear algebra: we think basis-free, we write basis-free, but when the chips are down we close the office door and compute with matrices like fury.

| author = — Irving Kaplansky, in writing about Paul Halmos

| align = center

}}

Citations

Sources

== Textbooks ==

  • {{Cite book|last=Axler|first=Sheldon Jay|title=Linear Algebra Done Right|publisher= Springer|year=2015|isbn=978-3-319-11079-0|edition=3rd|author-link=Sheldon Axler}}
  • {{Cite book|last=Bogart|first=Kenneth P.|title=Introductory Combinatorics|publisher= Harcourt Academic Press|year=2000|isbn=0-12-110830-9|author-link=Kenneth P. Bogart}}
  • {{Cite book|last=Dummit|first=David S.|title=Abstract Algebra|last2=Foote|first2=Richard M.|publisher=Wiley|year=2004|isbn=978-0-471-43334-7|edition=3rd}}
  • {{Cite book|last=Diestel|first=Reinhard|title=Graph Theory|publisher= Springer|year=2017|isbn=978-3-662-53621-6|edition=5|author-link=Reinhard Diestel}}
  • {{Cite book|last=Gallian|first=Joseph A.|title=Contemporary Abstract Algebra|publisher=Cengage|year=2012|isbn=978-1-133-59970-8|edition=8th|location=|pages=|author-link=Joseph Gallian}}
  • {{Cite book|last=Halmos|first=Paul Richard|title=Finite-Dimensional Vector Spaces|publisher= Springer|year=1974|isbn=0-387-90093-4|edition=2nd|author-link=Paul Halmos|orig-year=1958}}
  • {{Cite book|last=Hefferon|first=Jim|title=Linear Algebra|publisher=Orthogonal Publishing|year=2020|isbn=978-1-944325-11-4|edition=4th|author-link=Jim Hefferon}}
  • {{Cite book|last=Katznelson|first=Yitzhak|title=A (Terse) Introduction to Linear Algebra|last2=Katznelson|first2=Yonatan R.|publisher=American Mathematical Society|year=2008|isbn=978-0-8218-4419-9|author-link=Yitzhak Katznelson}}
  • {{Cite book|last=Roman|first=Steven|title=Advanced Linear Algebra|publisher=Springer|year=2005|isbn=0-387-24766-1|edition=2nd|author-link=Steven Roman}}
  • {{Cite book|last=Rotman|first=Joseph Jonah|title=An Introduction to the Theory of Groups|publisher= Springer|year=1999|isbn=3-540-94285-8|edition=4th|author-link=Joseph J. Rotman}}
  • {{Cite book|last=Strang|first=Gilbert|title=Introduction to Linear Algebra|publisher=Wellesley Cambridge Press|year=2016|isbn=978-0-9802327-7-6|edition=5th|location=|pages=|author-link=Gilbert Strang}}
  • {{Cite book|last=Süli|first=Endre|title=An Introduction to Numerical Analysis|last2=Mayers|first2=David|publisher=Cambridge University Press|year=2011|isbn=978-0-521-00794-8|author-link=Endre Süli|author-link2=|orig-year=2003}}
  • {{Cite book|last=Tao|first=Terence|title=Analysis 1|publisher=Hindustan Book Agency|year=2017|isbn=978-93-80250-64-9|edition=3rd|author-link=Terence Tao|orig-year=2014}}
  • {{Cite book|last=Tao|first=Terence|title=Analysis 2|publisher=Hindustan Book Agency|year=2017|isbn=978-93-80250-65-6|edition=3rd|author-link=Terence Tao|orig-year=2014}}
  • {{Cite book|last=Trefethen|first=Lloyd Nicholas|title=Numerical Linear Algebra|last2=Bau III|first2=David|publisher=SIAM|year=1997|isbn=978-0-898713-61-9|author-link=Nicholas Trefethen}}
  • {{Cite book|last=Tu|first=Loring W.|title=An Introduction to Manifolds|edition=2nd|pages=|publisher=Springer|year=2011|isbn=978-0-8218-4419-9|author-link=Loring W. Tu}}

__NOINDEX__