User:Tomruen/List of isotoxal polychora and honeycombs
A vertex transitive polytope is also edge-transitive if its vertex figure is vertex transitive! (Since each vertex in the vertex figure represents an edges in the polytope)
I think this is a complete list of regular convex and uniform 4-polytopes/honeycombs that are isotoxal. (And a subset of nonconvex forms from the nonconvex regulars)
Linear graph polychora/honeycombs
From convex self-dual regular and uniform polychora:
class=wikitable
![p,q,p] !{{CDD|node_1|p|node|q|node|p|node}} !{{CDD|node|p|node_1|q|node|p|node}} !{{CDD|node|p|node_1|q|node_1|p|node}} !{{CDD|node_1|p|node|q|node|p|node_1}} | ||||
align=center
| [3,3,3] | {{CDD|node|3|node_1|3|node|3|node}} r{3,3,3} 100px | {{CDD|node|3|node_1|3|node_1|3|node}} 2t{3,3,3} 100px | {{CDD|node_1|3|node|3|node|3|node_1}} e{3,3,3} 100px | |
align=center
| [3,4,3] | {{CDD|node_1|3|node|4|node|3|node}} {3,4,3} 100px | {{CDD|node|3|node_1|4|node|3|node}} r{3,4,3} 100px | {{CDD|node|3|node_1|4|node_1|3|node}} 2t{3,4,3} 100px | {{CDD|node_1|3|node|4|node|3|node_1}} e{3,4,3} 100px |
align=center
|[5/2,5,5/2] | {{CDD|node_1|5|rat|d2|node|5|node|5|rat|d2|node}} {5/2,5,5/2} | {{CDD|node|5|rat|d2|node_1|5|node|5|rat|d2|node}} r{5/2,5,5/2} | {{CDD|node|5|rat|d2|node_1|5|node_1|5|rat|d2|node}} 2t{5/2,5,5/2} DEGENERATE | {{CDD|node_1|5|rat|d2|node|5|node|5|rat|d2|node_1}} e{5/2,5,5/2} DEGENERATE |
align=center
|[5/2,5,5/2] | {{CDD|node_1|5|rat|d2|node|5|node|5|rat|d2|node}} {5/2,5,5/2} | {{CDD|node|5|rat|d2|node_1|5|node|5|rat|d2|node}} r{5/2,5,5/2} | {{CDD|node|5|rat|d2|node_1|5|node_1|5|rat|d2|node}} 2t{5/2,5,5/2} DEGENERATE | {{CDD|node_1|5|rat|d2|node|5|node|5|rat|d2|node_1}} e{5/2,5,5/2} DEGENERATE |
align=center
| [4,3,4] |{{CDD|node_1|4|node|3|node|4|node}} |{{CDD|node|4|node_1|3|node|4|node}} | ||||
align=center
| [3,5,3] |{{CDD|node_1|3|node|5|node|3|node}} |{{CDD|node|3|node_1|5|node|3|node}} | ||||
align=center
| [3,6,3] |{{CDD|node_1|3|node|6|node|3|node}} |{{CDD|node|3|node_1|6|node|3|node}} |{{CDD|node|3|node_1|6|node_1|3|node}} |{{CDD|node_1|3|node|6|node|3|node_1}} | ||||
align=center
| [5,3,5] |{{CDD|node_1|5|node|3|node|5|node}} |{{CDD|node|5|node_1|3|node|5|node}} | ||||
align=center
| [6,3,6] |{{CDD|node_1|6|node|3|node|6|node}} |{{CDD|node|6|node_1|3|node|6|node}} |{{CDD|node|6|node_1|3|node_1|6|node}} |{{CDD|node_1|6|node|3|node|6|node_1}} |
From convex regular and uniform polychora:
class=wikitable
![p,q,r] !{{CDD|node_1|p|node|q|node|r|node}} !{{CDD|node|p|node_1|q|node|r|node}} !{{CDD|node|p|node|q|node_1|r|node}} !{{CDD|node|p|node|q|node|r|node_1}} | ||||
align=center
| [4,3,3] | {{CDD|node_1|4|node|3|node|3|node}} {4,3,3} 100px | {{CDD|node|4|node_1|3|node|3|node}} r{4,3,3} 100px | {{CDD|node|4|node|3|node_1|3|node}} r{3,3,4} (24-cell) 100px | {{CDD|node|4|node|3|node|3|node_1}} {3,3,4} 100px |
align=center
| [5,3,3] | {{CDD|node_1|5|node|3|node|3|node}} {5,3,3} 100px | {{CDD|node|5|node_1|3|node|3|node}} r{5,3,3} 100px | {{CDD|node|5|node|3|node_1|3|node}} r{3,3,5} 100px | {{CDD|node|5|node|3|node|3|node_1}} {3,3,5} 100px |
align=center
| [6,3,3] | {{CDD|node_1|6|node|3|node|3|node}} {6,3,3} | {{CDD|node|6|node_1|3|node|3|node}} r{6,3,3} | {{CDD|node|6|node|3|node_1|3|node}} r{3,3,6} | {{CDD|node|6|node|3|node|3|node_1}} {3,3,6} |
align=center
|[5/2,5,3] | {{CDD|node_1|5|rat|d2|node|5|node|3|node}} {5/2,5,3} | {{CDD|node|5|rat|d2|node_1|5|node|3|node}} r{5/2,5,3} | {{CDD|node|5|rat|d2|node|5|node_1|3|node}} r{3,5,5/2} | {{CDD|node|5|rat|d2|node|5|node|3|node_1}} {3,5,5/2} |
align=center
|[5,3,5/2] | {{CDD|node_1|5|node|3|node|5|rat|d2|node}} {5,3,5/2} | {{CDD|node|5|node_1|3|node|5|rat|d2|node}} r{5,3,5/2} | {{CDD|node|5|node|3|node_1|5|rat|d2|node}} r{5/2,3,5} | {{CDD|node|5|node|3|node|5|rat|d2|node_1}} {5/2,3,5} |
align=center
|[3,5/2,5] | {{CDD|node_1|3|node|5|rat|d2|node|5|node}} {3,5/2,5} | {{CDD|node|3|node_1|5|rat|d2|node|5|node}} r{3,5/2,5} | {{CDD|node|3|node|5|rat|d2|node_1|5|node}} r{5,5/2,3} | {{CDD|node|3|node|5|rat|d2|node|5|node_1}} {5,5/2,3} |
align=center
|[3,3,5/2] | {{CDD|node_1|3|node|3|node|5|rat|d2|node}} {3,3,5/2} | {{CDD|node|3|node_1|3|node|5|rat|d2|node}} r{3,3,5/2} | {{CDD|node|3|node|3|node_1|5|rat|d2|node}} r{5/2,3,3} | {{CDD|node|3|node|3|node|5|rat|d2|node_1}} {5/2,3,3} |
align=center
| [5,3,4] |{{CDD|node_1|5|node|3|node|4|node}} |{{CDD|node|5|node_1|3|node|4|node}} | ||||
align=center
| [6,3,4] |{{CDD|node_1|6|node|3|node|4|node}} |{{CDD|node|6|node_1|3|node|4|node}} |{{CDD|node|6|node|3|node_1|4|node}} |{{CDD|node|6|node|3|node|4|node_1}} | ||||
align=center
| [6,3,5] |{{CDD|node_1|6|node|3|node|5|node}} |{{CDD|node|6|node_1|3|node|5|node}} |{{CDD|node|6|node|3|node_1|5|node}} |{{CDD|node|6|node|3|node|5|node_1}} |
Bifurcated graph honeycombs
class=wikitable
!Family !{{CDD|node_1|p|node|split1|nodes}} !{{CDD|node|p|node_1|split1|nodes}} !{{CDD|node|p|node|split1|nodes_10lu}} !{{CDD|node|p|node|split1|nodes_11}} |
align=center
![3,31,1] |100px |100px |100px |100px |
align=center
![4,31,1] |100px |100px |100px |100px |
align=center
![5,31,1] |100px |100px |100px |100px |
align=center
![6,31,1] |{{CDD|node_1|6|node|split1|nodes}} |{{CDD|node|6|node_1|split1|nodes}} |{{CDD|node|6|node|split1|nodes_10lu}} |{{CDD|node|6|node|split1|nodes_11}} |
class=wikitable
!Family !{{CDD|node_1|p|node|split1-44|nodes}} !{{CDD|node|p|node_1|split1-44|nodes}} !{{CDD|node|p|node|split1-44|nodes_10lu}} !{{CDD|node|p|node|split1-44|nodes_11}} |
align=center
![3,41,1] |{{CDD|node_1|3|node|split1-44|nodes}} |{{CDD|node|3|node_1|split1-44|nodes}} |{{CDD|node|3|node|split1-44|nodes_10lu}} |{{CDD|node|3|node|split1-44|nodes_11}} |
align=center
![4,41,1] |{{CDD|node_1|4|node|split1-44|nodes}} |{{CDD|node|4|node_1|split1-44|nodes}} |{{CDD|node|4|node|split1-44|nodes_10lu}} |{{CDD|node|4|node|split1-44|nodes_11}} |
Cyclic graph honeycombs
class=wikitable
!Family !{{CDD|labelp|branch_10r|3ab|branch|labelp}} !{{CDD|labelp|branch_10r|3ab|branch_01l|labelp}} !{{CDD|labelp|branch_11|3ab|branch|labelp}} !{{CDD|labelp|branch_10r|3ab|branch_10l|labelp}} !{{CDD|labelp|branch_11|3ab|branch_11|labelp}} |
[(3,3,3,3)] {{CDD|branch|3ab|branch}} !100px !100px !100px ! !100px |
---|
align=center
![(4,3,4,3)] !100px !100px !100px !100px !100px |
[(5,3,5,3)] {{CDD|label5|branch|3ab|branch|label5}} !100px !100px !100px !100px !100px |
[(6,3,6,3)] {{CDD|label6|branch|3ab|branch|label6}} !{{CDD|label6|branch_10r|3ab|branch|label6}} !{{CDD|label6|branch_10r|3ab|branch_01l|label6}} !{{CDD|label6|branch_11|3ab|branch|label6}} !{{CDD|label6|branch_10r|3ab|branch_10l|label6}} !{{CDD|label6|branch_11|3ab|branch_11|label6}} |
class=wikitable
!Family !{{CDD|labelp|branch_10r|3ab|branch|labelq}} !{{CDD|labelp|branch|3ab|branch_10l|labelq}} !{{CDD|labelp|branch_11|3ab|branch|labelq}} !{{CDD|labelp|branch|3ab|branch_11|labelq}} |
align=center
![(4,3,3,3)] !100px !100px !100px !100px |
align=center
![(5,3,3,3)] !100px !100px !100px !100px |
align=center
![(6,3,3,3)] !{{CDD|label6|branch_10r|3ab|branch}} !{{CDD|label6|branch|3ab|branch_10l}} !{{CDD|label6|branch_11|3ab|branch}} !{{CDD|label6|branch|3ab|branch_11}} |
[(5,3,4,3)] {{CDD|label5|branch|3ab|branch|label4}} !100px !100px !100px !100px |
---|
[(6,3,5,3)] {{CDD|label6|branch|3ab|branch|label5}} !{{CDD|label6|branch_10r|3ab|branch|label5}} !{{CDD|label6|branch|3ab|branch_10l|label5}} !{{CDD|label6|branch_11|3ab|branch|label5}} !{{CDD|label6|branch|3ab|branch_11|label5}} |
class=wikitable
!Family !{{CDD|labelp|branch_10r|4a4b|branch|labelq}} !{{CDD|labelp|branch_01r|4a4b|branch|labelq}} !{{CDD|labelp|branch|4a4b|branch_10l|labelq}} !{{CDD|labelp|branch_10r|4a4b|branch_01l|labelq}} !{{CDD|labelp|branch_11|4a4b|branch|labelq}} !{{CDD|labelp|branch_10r|4a4b|branch_10l|labelq}} !{{CDD|labelp|branch|4a4b|branch_11|labelq}} !{{CDD|labelp|branch_11|4a4b|branch_11|labelq}} |
[(4,4,4,3)] {{CDD|label4|branch|4a4b|branch}} !{{CDD|label4|branch_10r|4a4b|branch}} ! !{{CDD|label4|branch|4a4b|branch_10l}} ! !{{CDD|label4|branch_11|4a4b|branch}} ! !{{CDD|label4|branch|4a4b|branch_11}} ! |
---|
[(4,4,4,4)] {{CDD|label4|branch|4a4b|branch|label4}} !{{CDD|label4|branch_10r|4a4b|branch|label4}} ! ! !{{CDD|label4|branch_10r|4a4b|branch_01l|label4}} !{{CDD|label4|branch_11|4a4b|branch|label4}} ! ! !{{CDD|label4|branch_11|4a4b|branch_11|label4}} |