Vakhitov–Kolokolov stability criterion
The Vakhitov–Kolokolov stability criterion is a condition for linear stability (sometimes called spectral stability) of solitary wave solutions to a wide class of U(1)-invariant Hamiltonian systems, named after Soviet scientists Aleksandr Kolokolov (Александр Александрович Колоколов) and Nazib Vakhitov (Назиб Галиевич Вахитов).
The condition for linear stability of a solitary wave with frequency has the form
:
\frac{d}{d\omega}Q(\omega)<0,
where is the charge (or momentum) of the solitary wave
,
conserved by Noether's theorem due to U(1)-invariance of the system.
Original formulation
Originally, this criterion was obtained for the nonlinear Schrödinger equation,
:
i\frac{\partial}{\partial t}u(x,t)= -\frac{\partial^2}{\partial x^2} u(x,t) +g(|u(x,t)|^2)u(x,t),
where , , and is a smooth real-valued function. The solution is assumed to be complex-valued. Since the equation is U(1)-invariant, by Noether's theorem, it has an integral of motion,
, which is called charge or momentum, depending on the model under consideration.
For a wide class of functions , the nonlinear Schrödinger equation admits solitary wave solutions of the form
, where and decays for large
(one often requires that belongs to the Sobolev space ). Usually such solutions exist for from an interval or collection of intervals of a real line.
The Vakhitov–Kolokolov stability criterion,{{ cite journal
|author=Колоколов, А. А.
|title=Устойчивость основной моды нелинейного волнового уравнения в кубичной среде
|journal=Прикладная механика и техническая физика
|issue=3
|year=1973
|pages=152–155
|url=https://www.sibran.ru/journals/issue.php?ID=156469&ARTICLE_ID=156604
}}
|author=A.A. Kolokolov
|title=Stability of the dominant mode of the nonlinear wave equation in a cubic medium
|journal=Journal of Applied Mechanics and Technical Physics
|volume=14
|issue=3
|year=1973
|pages=426–428
|doi=10.1007/BF00850963
|bibcode=1973JAMTP..14..426K
|s2cid=123792737
|author1=Вахитов, Н. Г. |author2=Колоколов, А. А.
|name-list-style=amp |title=Стационарные решения волнового уравнения в среде с насыщением нелинейности
|journal=Известия высших учебных заведений. Радиофизика
|volume=16
|year=1973
|pages=1020–1028 }}{{ cite journal
|author1=N.G. Vakhitov |author2=A.A. Kolokolov
|name-list-style=amp |title=Stationary solutions of the wave equation in the medium with nonlinearity saturation
|journal=Radiophys. Quantum Electron.
|volume=16
|issue=7
|year=1973
|pages=783–789
|doi=10.1007/BF01031343
|bibcode=1973R&QE...16..783V |s2cid=123386885
}}
:
is a condition of spectral stability of a solitary wave solution. Namely, if this condition is satisfied at a particular value of , then the linearization at the solitary wave with this has no spectrum in the right half-plane.
This result is based on an earlier work{{ cite journal
|author = Vladimir E. Zakharov
|title=Instability of Self-focusing of Light
|journal=Zh. Eksp. Teor. Fiz.
|year = 1967
|volume=53
|pages=1735–1743
|url=https://www.jetp.ac.ru/cgi-bin/dn/e_026_05_0994.pdf
|bibcode=1968JETP...26..994Z
}} by Vladimir Zakharov.
Generalizations
This result has been generalized to abstract Hamiltonian systems with U(1)-invariance.{{cite journal
|author1=Manoussos Grillakis |author2=Jalal Shatah |author3=Walter Strauss |name-list-style=amp |title=Stability theory of solitary waves in the presence of symmetry. I
|journal=J. Funct. Anal.
|volume=74
|year=1987
|pages=160–197
|doi=10.1016/0022-1236(87)90044-9|doi-access=free}}
It was shown that under rather general conditions the Vakhitov–Kolokolov stability
criterion guarantees not only spectral stability
but also orbital stability of solitary waves.
The stability condition has been generalized{{cite journal
|author1=Jerry Bona |author2=Panagiotis Souganidis |author3=Walter Strauss |name-list-style=amp |title=Stability and instability of solitary waves of Korteweg-de Vries type
|journal=Proceedings of the Royal Society A
|volume=411
|year=1987
|issue=1841
|pages=395–412
|doi=10.1098/rspa.1987.0073
|bibcode=1987RSPSA.411..395B |s2cid=120894859 }}
to traveling wave solutions
to the generalized Korteweg–de Vries equation of the form
:.
The stability condition has also been generalized to Hamiltonian systems with a more general symmetry group.{{cite journal
|author1=Manoussos Grillakis |author2=Jalal Shatah |author3=Walter Strauss |name-list-style=amp |title=Stability theory of solitary waves in the presence of symmetry
|journal=J. Funct. Anal.
|volume=94
|issue=2 |year=1990
|pages=308–348
|doi=10.1016/0022-1236(90)90016-E |doi-access=free}}