Water scarcity#Changes in climate
{{short description|Situation where there is a shortage of water}}
{{Use dmy dates|date=April 2021}}
File:Water stress 2019 WRI.png
Water scarcity (closely related to water stress or water crisis) is the lack of fresh water resources to meet the standard water demand. There are two types of water scarcity. One is physical. The other is economic water scarcity.{{rp|560}} Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity.{{Cite journal|last=Rijsberman|first=Frank R.|date=2006|title=Water scarcity: Fact or fiction?|url=https://linkinghub.elsevier.com/retrieve/pii/S0378377405002854|journal=Agricultural Water Management|language=en|volume=80|issue=1–3|pages=5–22|doi=10.1016/j.agwat.2005.07.001|bibcode=2006AgWM...80....5R }} Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand.Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022: [https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter04.pdf Chapter 4: Water]. In: [https://www.ipcc.ch/report/ar6/wg2/ Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change] [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006.{{rp|560}} Many people in Sub-Saharan Africa are living with economic water scarcity.IWMI (2007) [https://www.iwmi.cgiar.org/assessment/files_new/synthesis/Summary_SynthesisBook.pdf Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture]. London: Earthscan, and Colombo: International Water Management Institute.{{rp|11}}
There is enough freshwater available globally and averaged over the year to meet demand. As such, water scarcity is caused by a mismatch between when and where people need water, and when and where it is available.{{Cite journal|last1=Mekonnen|first1=Mesfin M.|last2=Hoekstra|first2=Arjen Y.|date=2016|title=Four billion people facing severe water scarcity|journal=Science Advances|language=en|volume=2|issue=2|pages=e1500323|bibcode=2016SciA....2E0323M|doi=10.1126/sciadv.1500323|issn=2375-2548|pmc=4758739|pmid=26933676}} This can happen due to an increase in the number of people in a region, changing living conditions and diets, and expansion of irrigated agriculture.{{Cite journal|last=Vorosmarty|first=C. J.|date=2000-07-14|title=Global Water Resources: Vulnerability from Climate Change and Population Growth|url=https://www.science.org/doi/10.1126/science.289.5477.284|journal=Science|volume=289|issue=5477|pages=284–288|doi=10.1126/science.289.5477.284|pmid=10894773|bibcode=2000Sci...289..284V|s2cid=37062764 |url-access=subscription}}{{Cite journal|last1=Ercin|first1=A. Ertug|last2=Hoekstra|first2=Arjen Y.|date=2014|title=Water footprint scenarios for 2050: A global analysis|journal=Environment International|language=en|volume=64|pages=71–82|doi=10.1016/j.envint.2013.11.019|pmid=24374780|doi-access=free|bibcode=2014EnInt..64...71E }}{{Cite journal |last1=Liu |first1=Junguo |last2=Yang |first2=Hong |last3=Gosling |first3=Simon N. |last4=Kummu |first4=Matti |last5=Flörke |first5=Martina |last6=Pfister |first6=Stephan |last7=Hanasaki |first7=Naota |last8=Wada |first8=Yoshihide |last9=Zhang |first9=Xinxin |last10=Zheng |first10=Chunmiao |last11=Alcamo |first11=Joseph |date=2017 |title=Water scarcity assessments in the past, present, and future: Review on Water Scarcity Assessment |journal=Earth's Future |language=en |volume=5 |issue=6 |pages=545–559 |doi=10.1002/2016EF000518 |pmc=6204262 |pmid=30377623}} Climate change (including droughts or floods), deforestation, water pollution and wasteful use of water can also mean there is not enough water.{{cite web|year=2013|title=Water Scarcity. Threats|url=http://worldwildlife.org/threats/water-scarcity|url-status=live|archive-url=https://web.archive.org/web/20131021012358/http://worldwildlife.org/threats/water-scarcity|archive-date=21 October 2013|access-date=20 October 2013|work=WWF}} These variations in scarcity may also be a function of prevailing economic policy and planning approaches.
Water scarcity assessments look at many types of information. They include green water (soil moisture), water quality, environmental flow requirements, and virtual water trade. Water stress is one parameter to measure water scarcity. It is useful in the context of Sustainable Development Goal 6. Half a billion people live in areas with severe water scarcity throughout the year, and around four billion people face severe water scarcity at least one month per year.{{cite web|date=23 March 2017|title=How do we prevent today's water crisis becoming tomorrow's catastrophe?|url=https://www.weforum.org/agenda/2017/03/building-freshwater-resilience-to-anticipate-and-address-water-crises/|url-status=live|archive-url=https://web.archive.org/web/20171230115222/https://www.weforum.org/agenda/2017/03/building-freshwater-resilience-to-anticipate-and-address-water-crises/|archive-date=30 December 2017|access-date=30 December 2017|publisher=World Economic Forum}} Half of the world's largest cities experience water scarcity. There are 2.3 billion people who reside in nations with water scarcities (meaning less than 1700 m3 of water per person per year).{{Cite web |title=Wastewater resource recovery can fix water insecurity and cut carbon emissions |url=https://www.eib.org/en/essays/wastewater-resource-recovery |access-date=2022-08-29 |website=European Investment Bank |language=en}}{{Cite web |title=International Decade for Action 'Water for Life' 2005-2015. Focus Areas: Water scarcity |url=https://www.un.org/waterforlifedecade/scarcity.shtml |access-date=2022-08-29 |website=www.un.org |language=EN}}{{Cite web |title=THE STATE OF THE WORLD'S LAND AND WATER RESOURCES FOR FOOD AND AGRICULTURE |url=https://www.fao.org/3/i1688e/i1688e.pdf}}
There are different ways to reduce water scarcity. It can be done through supply and demand side management, cooperation between countries and water conservation. Expanding sources of usable water can help. Reusing wastewater and desalination are ways to do this. Others are reducing water pollution and changes to the virtual water trade.
{{TOC limit|3}}
Definitions
File:WWDR4 Global physical and economic water scarcity.pngWater scarcity has been defined as the "volumetric abundance, or lack thereof, of freshwater resources" and it is thought to be "human-driven".The CEO Water Mandate (2014) [https://ceowatermandate.org/wp-content/uploads/2019/11/terminology.pdf Driving Harmonization of Water-Related Terminology, Discussion Paper] September 2014. Alliance for Water Stewardship, Ceres, CDP (formerly the Carbon Disclosure Project), The Nature Conservancy, Pacific Institute, Water Footprint Network, World Resources Institute, and WWF{{rp|4}} This can also be called "physical water scarcity". There are two types of water scarcity. One is physical water scarcity and the other is economic water scarcity.{{rp|560}} Some definitions of water scarcity look at environmental water requirements. This approach varies from one organization to another.{{rp|4}} File:Annualglobalwaterconsumption.jpgRelated concepts are water stress and water risk. The CEO Water Mandate, an initiative of the UN Global Compact, proposed to harmonize these in 2014.{{rp|2}} In their discussion paper they state that these three terms should not be used interchangeably.{{rp|3}}File:Water Stress, Top Countries (2020).svg
Some organizations define water stress as a broader concept. It would include aspects of water availability, water quality and accessibility. Accessibility depends on existing infrastructure. It also depends on whether customers can afford to pay for the water.{{rp|4}} Some experts call this economic water scarcity.
The FAO defines water stress as the "symptoms of water scarcity or shortage". Such symptoms could be "growing conflict between users, and competition for water, declining standards of reliability and service, harvest failures and food insecurity".{{cite web |year=2012 |title=Coping with water scarcity. An action framework for agriculture and food stress |url=http://www.fao.org/docrep/016/i3015e/i3015e.pdf |url-status=live |archive-url=https://web.archive.org/web/20180304210442/http://www.fao.org/docrep/016/i3015e/i3015e.pdf |archive-date=4 March 2018 |access-date=31 December 2017 |publisher=Food and Agriculture Organization of the United Nations}} {{rp|6}} This is measured with a range of Water Stress Indices.
A group of scientists provided another definition for water stress in 2016: "Water stress refers to the impact of high water use (either withdrawals or consumption) relative to water availability."{{Cite journal|last1=Kummu|first1=M.|last2=Guillaume|first2=J. H. A.|last3=de Moel|first3=H.|last4=Eisner|first4=S.|last5=Flörke|first5=M.|last6=Porkka|first6=M.|last7=Siebert|first7=S.|last8=Veldkamp|first8=T. I. E.|last9=Ward|first9=P. J.|date=2016|title=The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability|journal=Scientific Reports|language=en|volume=6|issue=1|pages=38495|doi=10.1038/srep38495|issn=2045-2322|pmc=5146931|pmid=27934888|bibcode=2016NatSR...638495K}} This means water stress would be a demand-driven scarcity.
Types
Experts have defined two types of water scarcity. One is physical water scarcity. The other is economic water scarcity. These terms were first defined in a 2007 study led by the International Water Management Institute. This examined the use of water in agriculture over the previous 50 years. It aimed to find out if the world had sufficient water resources to produce food for the growing population in the future.{{rp|1}}
= Physical water scarcity =
Physical water scarcity occurs when natural water resources are not enough to meet all demands. This includes water needed for ecosystems to function well. Dry regions often suffer from physical water scarcity. Human influence on climate has intensified water scarcity in areas where it was already a problem.{{Cite web |title=Climate Change 2022: Impacts, Adaptation and Vulnerability |url=https://www.ipcc.ch/report/ar6/wg2/ |access-date=2022-02-28 |website=www.ipcc.ch |language=en}} It also occurs where water seems abundant but where resources are over-committed. One example is overdevelopment of hydraulic infrastructure. This can be for irrigation or energy generation. There are several symptoms of physical water scarcity. They include severe environmental degradation, declining groundwater and water allocations favouring some groups over others.{{rp|6}}
Water is scarce in densely populated arid areas. These are projected to have less than 1000 cubic meters available per capita per year. Examples are Central and West Asia, and North Africa). A study in 2007 found that more than 1.2 billion people live in areas of physical water scarcity.Molden, D. (Ed). Water for food, Water for life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan/IWMI, 2007, p.11 This water scarcity relates to water available for food production, rather than for drinking water which is a much smaller amount.{{Cite web|last1=Molden|first1=David|last2=Fraiture|first2=Charlotte de|last3=Rijsberman|first3=Frank|date=1970-01-01|title=Water Scarcity: The Food Factor|url=https://issues.org/molden-water-food-scarcity/|access-date=2021-09-22|website=Issues in Science and Technology|language=en-US}}
Some academics propose a separate type of water scarcity termed ecological water scarcity though some publications argue that this falls within the definition of physical water scarcity. It would focus on the water demand of ecosystems, referring to the minimum quantity and quality of water discharge needed to maintain sustainable and functional ecosystems. Results from a modelling study in 2022 show that northern China suffered more severe ecological water scarcity than southern China. The driving factor of ecological water scarcity in most provinces was water pollution rather than human water use.{{Cite journal |last1=Liu |first1=Kewei |last2=Cao |first2=Wenfang |last3=Zhao |first3=Dandan |last4=Liu |first4=Shuman |last5=Liu |first5=Junguo |date=2022-10-01 |title=Assessment of ecological water scarcity in China |journal=Environmental Research Letters |volume=17 |issue=10 |pages=104056 |doi=10.1088/1748-9326/ac95b0 |bibcode=2022ERL....17j4056L |issn=1748-9326|doi-access=free}} 50px Text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License]
= Economic water scarcity =
File:Collecting clean water with the help of UKaid (5330401479).jpg in Pakistan.]]
Economic water scarcity is due to a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also reflects insufficient human capacity to meet the demand for water.Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022: [https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter04.pdf Chapter 4: Water]. In: [https://www.ipcc.ch/report/ar6/wg2/ Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change] [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006.{{rp|560}} It causes people without reliable water access to travel long distances to fetch water for household and agricultural uses. Such water is often unclean.
The United Nations Development Programme says economic water scarcity is the most common cause of water scarcity. This is because most countries or regions have enough water to meet household, industrial, agricultural, and environmental needs. But they lack the means to provide it in an accessible manner.United Nations Development Programme (2006). [http://hdr.undp.org/en/content/human-development-report-2006 Human Development Report 2006: Beyond Scarcity–Power, Poverty and the Global Water Crisis] {{Webarchive|url=https://web.archive.org/web/20180107062747/http://hdr.undp.org/en/content/human-development-report-2006 |date=7 January 2018 }}. Basingstoke, United Kingdom:Palgrave Macmillan. Around a fifth of the world's population currently live in regions affected by physical water scarcity.
A quarter of the world's population is affected by economic water scarcity. It is a feature of much of Sub-Saharan Africa.{{rp|11}} So better water infrastructure there could help to reduce poverty. Investing in water retention and irrigation infrastructure would help increase food production. This is especially the case for developing countries that rely on low-yield agriculture.{{cite journal|last1=Duchin|first1=Faye|last2=López-Morales|first2=Carlos|date=December 2012|title=Do Water-Rich Regions Have A Comparative Advantage In Food Production? Improving The Representation Of Water For Agriculture In Economic Models|journal=Economic Systems Research|volume=24|issue=4|pages=371–389|doi=10.1080/09535314.2012.714746|s2cid=154723701}} Providing water that is adequate for consumption would also benefit public health.{{cite journal|last1=Madulu|first1=Ndalahwa|date=2003|title=Linking poverty levels to water resource use and conflicts in rural Tanzania|journal=Physics & Chemistry of the Earth - Parts A/B/C|volume=28|issue=20–27|page=911|doi=10.1016/j.pce.2003.08.024|bibcode=2003PCE....28..911M}} This is not only a question of new infrastructure. Economic and political intervention are necessary to tackle poverty and social inequality. The lack of funding means there is a need for planning.{{cite journal|last1=Noemdoe|first1=S.|last2=Jonker|first2=L.|last3=Swatuk|first3=L.A|date=2006|title=Perceptions of water scarcity: The case of Genadendal and outstations|journal=Physics and Chemistry of the Earth|volume=31|issue=15|pages=771–778|doi=10.1016/j.pce.2006.08.003|bibcode=2006PCE....31..771N|hdl-access=free|hdl=11394/1905}}
The emphasis is usually on improving water sources for drinking and domestic purposes. But more water is used for purposes such as bathing, laundry, livestock and cleaning than drinking and cooking. This suggests that too much emphasis on drinking water addresses only part of the problem. So it can limit the range of solutions available.
Challenges
File:Lake Chad map showing receding water area and level 1972-2007.svg has shrunk by 90% since the 1960s.{{cite news |date=31 March 2018 |title=Lake Chad: Can the vanishing lake be saved? |work=BBC News |url=https://www.bbc.com/news/world-africa-43500314 |url-status=live |access-date=9 August 2019 |archive-url=https://web.archive.org/web/20190809092459/https://www.bbc.com/news/world-africa-43500314 |archive-date=9 August 2019}}]]
= Simple indicators =
There are several indicators for measuring water scarcity. One is the water use to availability ratio. This is also known as the criticality ratio. Another is the IWMI Indicator. This measures physical and economic water scarcity. Another is the water poverty index.
"Water stress" is a criterion to measure water scarcity. Experts use it in the context of Sustainable Development Goal 6. A report by the FAO in 2018 provided a definition of water stress. It described it as "the ratio between total freshwater withdrawn (TFWW) by all major sectors and total renewable freshwater resources (TRWR), after taking into account environmental flow requirements (EFR)". This means that the value for TFWW is divided by the difference between TRWR minus EFR.FAO (2018). [https://www.unwater.org/publications/progress-on-level-of-water-stress-642/ Progress on level of water stress - Global baseline for SDG 6 Indicator 6.4.2] Rome. FAO/UN-Water. 58 pp. Licence: CC BY-NC-SA 3.0 IGO.{{rp|xii}} Environmental flows are water flows required to sustain freshwater and estuarine ecosystems. A previous definition in Millennium Development Goal 7, target 7.A, was simply the proportion of total water resources used, without taking EFR into consideration.{{rp|28}} This definition sets out several categories for water stress. Below 10% is low stress; 10-20% is low-to-medium; 20-40% medium-to-high; 40-80% high; above 80% very high.
Indicators are used to measure the extent of water scarcity.{{Cite web|last=Matlock|first=Marty D.|title=A Review of Water Scarcity Indices and Methodologies|url=http://oamk.fi/~mohameda/materiaali16/Water%20and%20environmental%20management%202015/2011_Brown_Matlock_Water-Availability-Assessment-Indices-and-Methodologies-Lit-Review.pdf|url-status=dead|archive-url=https://web.archive.org/web/20171013014517/http://oamk.fi/~mohameda/materiaali16/Water%20and%20environmental%20management%202015/2011_Brown_Matlock_Water-Availability-Assessment-Indices-and-Methodologies-Lit-Review.pdf|archive-date=13 October 2017|access-date=5 February 2018|website=University of Arkansas - The Sustainability Consortium}} One way to measure water scarcity is to calculate the amount of water resources available per person each year. One example is the "Falkenmark Water Stress Indicator". This was developed by Malin Falkenmark. This indicator says a country or region experiences "water stress" when annual water supplies drop below 1,700 cubic meters per person per year.{{Cite journal|last1=Falkenmark|first1=Malin|last2=Lundqvist|first2=Jan|last3=Widstrand|first3=Carl|date=1989|title=Macro-scale water scarcity requires micro-scale approaches|url=https://onlinelibrary.wiley.com/doi/10.1111/j.1477-8947.1989.tb00348.x|journal=Natural Resources Forum|language=en|volume=13|issue=4|pages=258–267|doi=10.1111/j.1477-8947.1989.tb00348.x|pmid=12317608|url-access=subscription}} Levels between 1,700 and 1,000 cubic meters will lead to periodic or limited water shortages. When water supplies drop below 1,000 cubic meters per person per year the country faces "water scarcity". However, the Falkenmark Water Stress Indicator does not help to explain the true nature of water scarcity.
==Renewable freshwater resources==
{{Main|List of countries by total renewable water resources}}
It is also possible to measure water scarcity by looking at renewable freshwater. Experts use it when evaluating water scarcity. This metric can describe the total available water resources each country contains. This total available water resource gives an idea of whether a country tend to experience physical water scarcity.WWAP (World Water Assessment Programme). 2012. [http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/pdf/WWDR4%20Volume%201-Managing%20Water%20under%20Uncertainty%20and%20Risk.pdf The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk]. Paris, UNESCO. This metric has a drawback because it is an average. Precipitation delivers water unevenly across the planet each year. So annual renewable water resources vary from year to year. This metric does not describe how easy it is for individuals, households, industries or government to access water. Lastly this metric gives a description of a whole country. So it does not accurately portray whether a country is experiencing water scarcity. For example, Canada and Brazil both have very high levels of available water supply. But they still face various water-related problems. Some tropical countries in Asia and Africa have low levels of freshwater resources.
= More sophisticated indicators =
File:Average ecological water scarcity at the provincial level in China 2016-2019.png
Water scarcity assessments must include several types of information. They include data on green water (soil moisture), water quality, environmental flow requirements, globalisation, and virtual water trade. Since the early 2000s, water scarcity assessments have used more complex models. These benefit from spatial analysis tools. Green-blue water scarcity is one of these. Footprint-based water scarcity assessment is another. Another is cumulative abstraction to demand ratio, which considers temporal variations. Further examples are LCA-based water stress indicators and integrated water quantity–quality environment flow. Since the early 2010s assessments have looked at water scarcity from both quantity and quality perspectives.{{Cite journal |last1=Zeng |first1=Zhao |last2=Liu |first2=Junguo |last3=Savenije |first3=Hubert H.G. |date=2013 |title=A simple approach to assess water scarcity integrating water quantity and quality |url=https://linkinghub.elsevier.com/retrieve/pii/S1470160X13002434 |journal=Ecological Indicators |language=en |volume=34 |pages=441–449 |doi=10.1016/j.ecolind.2013.06.012|bibcode=2013EcInd..34..441Z |url-access=subscription }}
A successful assessment will bring together experts from several scientific discipline. These include the hydrological, water quality, aquatic ecosystem science, and social science communities.
Available water
File:GlobalWaterWithdrawals.jpg{{Main|Water resources|Fresh water|Water supply}}
The United Nations estimates that only 200,000 cubic kilometers of the total 1.4 billion cubic kilometers of water on Earth is freshwater available for human consumption. A mere 0.014% of all water on Earth is both fresh and easily accessible.{{Cite web|title=The Water Crisis and its solutions: We need to take global action now.|url=https://waterstillar.com/why/water-crisis/|access-date=2021-09-19|website=WaterStillar|language=en-US|archive-date=20 September 2021|archive-url=https://web.archive.org/web/20210920212221/https://waterstillar.com/why/water-crisis/|url-status=dead}} Of the remaining water, 97% is saline, and a little less than 3% is difficult to access. The fresh water available to us on the planet is around 1% of the total water on earth.{{Cite web|last=Conceição|first=Pedro|date=2020|title=The next frontier Human development and the Anthropocene|url=http://hdr.undp.org/en/2020-report|access-date=14 March 2021|website=United Nations Development Reports}} The total amount of easily accessible freshwater on Earth is 14,000 cubic kilometers. This takes the form of surface water such as rivers and lakes or groundwater, for example in aquifers. Of this total amount, humanity uses and resuses just 5,000 cubic kilometers. Technically, there is a sufficient amount of freshwater on a global scale. So in theory there is more than enough freshwater available to meet the demands of the current world population of 8 billion people. There is even enough to support population growth to 9 billion or more. But unequal geographical distribution and unequal consumption of water makes it a scarce resource in some regions and groups of people.
Rivers and lakes provide common surface sources of freshwater. But other water resources such as groundwater and glaciers have become more developed sources of freshwater. They have become the main source of clean water. Groundwater is water that has pooled below the surface of the Earth. It can provide a usable quantity of water through springs or wells. These areas of groundwater are also known as aquifers. It is becoming harder to use conventional sources because of pollution and climate change. So people are drawing more and more on these other sources. Population growth is encouraging greater use of these types of water resources.
Scale
= Current estimates =
In 2019 the World Economic Forum listed water scarcity as one of the largest global risks in terms of potential impact over the next decade.{{cite web|title=Global risks report 2019|url=https://www.weforum.org/reports/the-global-risks-report-2019|url-status=live|archive-url=https://web.archive.org/web/20190325101510/https://www.weforum.org/reports/the-global-risks-report-2019|archive-date=25 March 2019|access-date=25 March 2019|publisher=World Economic Forum}} Water scarcity can take several forms. One is a failure to meet demand for water, partially or totally. Other examples are economic competition for water quantity or quality, disputes between users, irreversible depletion of groundwater, and negative impacts on the environment.
About half of the world's population currently experience severe water scarcity for at least some part of the year.{{Cite web |date=February 27, 2022 |title=Climate Change 2022: Impacts, Adaptation and Vulnerability Summary for Policy Makers |url=https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_SummaryForPolicymakers.pdf |access-date=March 1, 2022 |website=IPCC Sixth Assessment Report |archive-date=28 February 2022 |archive-url=https://web.archive.org/web/20220228111851/https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_SummaryForPolicymakers.pdf |url-status=dead }} Half a billion people in the world face severe water scarcity all year round. Half of the world's largest cities experience water scarcity. Almost two billion people do not currently have access to clean drinking water.
{{Cite web |title=IPCC Fact sheet - Food and Water |url=https://www.ipcc.ch/report/ar6/wg2/downloads/outreach/IPCC_AR6_WGII_FactSheet_FoodAndWater.pdf |website=IPCC}}{{Cite web |title=Water crisis is a vital investment opportunity |url=https://www.eib.org/en/stories/water-crisis-investment |access-date=2023-03-31 |website=European Investment Bank |language=en}} A study in 2016 calculated that the number of people suffering from water scarcity increased from 0.24 billion or 14% of global population in the 1900s to 3.8 billion (58%) in the 2000s. This study used two concepts to analyse water scarcity. One is shortage, or impacts due to low availability per capita. The other is stress, or impacts due to high consumption relative to availability.
= Future predictions =
File:Dharan Nepal Shardu Water Scarcity Kaustuvraj.jpg collect water from river]]In the 20th century, water use has been growing at more than twice the rate of the population increase. Specifically, water withdrawals are likely to rise by 50 percent by 2025 in developing countries, and 18 per cent in developed countries.{{cite book |last1=Barbier |first1=Edward |url=https://books.google.com/books?id=166CCgAAQBAJ&q=water+withdrawals+are+predicted+to+increase+by+50+percent+by+2025&pg=PA500 |title=Handbook of Water Economics |date=September 25, 2015 |publisher=Edward Elgar Publishing |isbn=9781782549666 |page=550 |access-date=6 December 2016}} One continent, for example, Africa, has been predicted to have 75 to 250 million inhabitants lacking access to fresh water.{{cite web |date=12 March 2009 |title=Ballooning global population adding to water crisis, warns new UN report |url=https://www.un.org/apps/news/story.asp?NewsID=30167&Cr=water&Cr1=supply#.WEYuHLIrLIU |access-date=6 December 2016 |website=United Nations News Centre |publisher=UN News Centre}} By 2025, 1.8 billion people will be living in countries or regions with absolute water scarcity, and two-thirds of the world population could be under stress conditions.{{cite web |date=2014-11-24 |title=Water scarcity | International Decade for Action 'Water for Life' 2005-2015 |url=https://www.un.org/waterforlifedecade/scarcity.shtml |publisher=Un.org |accessdate=2022-04-06}} By 2050, more than half of the world's population will live in water-stressed areas, and another billion may lack sufficient water, MIT researchers find.{{cite news |last1=Roberts |first1=Alli Gold |date=2014-01-09 |title=Predicting the future of global water stress |work=MIT News |url=https://news.mit.edu/2014/predicting-the-future-of-global-water-stress |access-date=22 December 2017}}
With the increase in global temperatures and an increase in water demand, six out of ten people are at risk of being water-stressed. The drying out of wetlands globally, at around 67%, was a direct cause of a large number of people at risk of water stress. As global demand for water increases and temperatures rise, it is likely that two thirds of the population will live under water stress in 2025.{{Cite journal|last1=Matti Kummu|last2=Philip J Ward|last3=Hans de Moel|last4=Olli Varis|date=2010-08-16|title=Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia|journal=Environmental Research Letters|language=en|volume=5|issue=3|page=034006|doi=10.1088/1748-9326/5/3/034006|bibcode=2010ERL.....5c4006K|issn=1748-9326|doi-access=free}}{{rp|191}}
According to a projection by the United Nations, by 2040, there can be about 4.5 billion people affected by a water crisis (or water scarcity). Additionally, with the increase in population, there will be a demand for food, and for the food output to match the population growth, there would be an increased demand for water to irrigate crops.{{Cite journal|last=Baer|first=Anne|date=June 1996|title=Not enough water to go around|url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2451.1996.tb00079.x|journal=International Social Science Journal|volume=48|issue=148|pages=277–292|doi=10.1111/j.1468-2451.1996.tb00079.x|via=Wiley Online Library|url-access=subscription}} The World Economic Forum estimates that global water demand will surpass global supply by 40% by 2030.{{Cite web |title=Ensuring sustainable water management for all by 2030 |url=https://www.weforum.org/impact/sustainable-water-management/ |access-date=2023-03-31 |website=World Economic Forum |date=16 September 2022 |language=en}}{{Cite web |title=Water crisis is a vital investment opportunity |url=https://www.eib.org/en/stories/water-crisis-investment |access-date=2023-03-31 |website=European Investment Bank |language=en}} Increasing the water demand as well as increasing the population results in a water crisis where there is not enough water to share in healthy levels. The crises are not only due to quantity but quality also matters.
A study found that 6-20% of about 39 million groundwater wells are at high risk of running dry if local groundwater levels decline by a few meters. In many areas and with possibly more than half of major aquifers{{cite journal |last1=Famiglietti |first1=James S. |last2=Ferguson |first2=Grant |title=The hidden crisis beneath our feet |url=https://www.science.org/doi/10.1126/science.abh2867 |journal=Science |access-date=10 May 2021 |pages=344–345 |language=en |doi=10.1126/science.abh2867 |issn=0036-8075 |date=23 April 2021|volume=372 |issue=6540 |pmid=33888627 |bibcode=2021Sci...372..344F |s2cid=233353241 |url-access=subscription }} this would apply if they simply continue to decline.{{cite news |title=The largest assessment of global groundwater wells finds many are at risk of drying up |url=https://www.sciencedaily.com/releases/2021/04/210423130101.htm |access-date=10 May 2021 |work=ScienceDaily |language=en}}{{cite journal |last1=Jasechko |first1=Scott |last2=Perrone |first2=Debra |title=Global groundwater wells at risk of running dry |journal=Science |date=23 April 2021 |volume=372 |issue=6540 |pages=418–421 |doi=10.1126/science.abc2755 |pmid=33888642 |bibcode=2021Sci...372..418J |s2cid=233353207 |url=https://www.science.org/doi/10.1126/science.abc2755 |access-date=10 May 2021 |language=en |issn=0036-8075|url-access=subscription }}
Impacts
{{See also|Water security}}
= Water supply shortages =
{{See also|WASH}}File:California Drought Dry Lakebed 2009.jpg, which was experiencing its worst megadrought in 1,200 years (as of 2022), precipitated by climate change, and is therefore water rationing.{{cite web |author=Irina Ivanova |date=June 2, 2022 |title=California is rationing water amid its worst drought in 1,200 years |url=https://www.cbsnews.com/news/water-cutbacks-california-6-million-people-drought/ |accessdate=June 4, 2022 |publisher=CBS News}} ]]
Controllable factors such as the management and distribution of the water supply can contribute to scarcity. A 2006 United Nations report focuses on issues of governance as the core of the water crisis. The report noted that: "There is enough water for everyone". It also said: "Water insufficiency is often due to mismanagement, corruption, lack of appropriate institutions, bureaucratic inertia and a shortage of investment in both human capacity and physical infrastructure".[http://unesdoc.unesco.org/images/0014/001444/144409E.pdf Water, a shared responsibility. The United Nations World Water Development Report 2] {{Webarchive|url=https://web.archive.org/web/20090106144926/http://unesdoc.unesco.org/images/0014/001444/144409E.pdf|date=6 January 2009}}, 2006
Economists and others have argued that a lack of property rights, government regulations and water subsidies have given rise to the situation with water. These factors cause prices to be too low and consumption too high, making a point for water privatization.Segerfeldt, Fredrik (25 August 2005), [http://www.cato.org/pub_display.php?pub_id=4462 "Private Water Saves Lives"] {{Webarchive|url=https://web.archive.org/web/20110921133211/http://www.cato.org/pub_display.php?pub_id=4462|date=21 September 2011}}, Financial Times.Zetland, David (1 August 2008) [http://aguanomics.com/2008/08/running-out-of-water.html "Running Out of Water"] {{Webarchive|url=https://web.archive.org/web/20110707094104/http://www.aguanomics.com/2008/08/running-out-of-water.html|date=7 July 2011}}. aguanomics.comZetland, David (14 July 2008) [http://aguanomics.com/2008/07/water-crisis.html "Water Crisis"] {{Webarchive|url=https://web.archive.org/web/20110707094234/http://www.aguanomics.com/2008/07/water-crisis.html|date=7 July 2011}}. aguanomics.com
The clean water crisis is an emerging global crisis affecting approximately 785 million people around the world.{{Cite web |title=Why Water? - Water Changes Everything |url=https://water.org/about-us/why-water/ |access-date=2020-03-24 |website=Water.org}} 1.1 billion people lack access to water and 2.7 billion experience water scarcity at least one month in a year. 2.4 billion people suffer from contaminated water and poor sanitation. Contamination of water can lead to deadly diarrheal diseases such as cholera and typhoid fever and other waterborne diseases. These account for 80% of illnesses around the world.{{Cite web |title=Global Water Shortage: Water Scarcity & How to Help - Page 2 |url=https://thewaterproject.org/water_scarcity_2 |access-date=2020-03-24 |website=The Water Project |language=en}}
= Environment =
File:Madagascar highland plateau.jpg has led to extensive siltation and unstable flows of western rivers.]]
Using water for domestic, food and industrial uses has major impacts on ecosystems in many parts of the world. This can apply even to regions not considered "water scarce". Water scarcity damages the environment in many ways. These include adverse effects on lakes, rivers, ponds, wetlands and other fresh water resources. Thus results in water overuse because water is scarce. This often occurs in areas of irrigation agriculture. It can harm the environment in several ways. This includes increased salinity, nutrient pollution, and the loss of floodplains and wetlands.{{cite web|title=Water Scarcity Index – Vital Water Graphics|url=http://www.unep.org/dewa/vitalwater/article77.html|url-status=live|archive-url=https://web.archive.org/web/20081216143250/http://www.unep.org/dewa/vitalwater/article77.html|archive-date=16 December 2008|access-date=20 October 2013}} Water scarcity also makes it harder to use flow to rehabilitate urban streams.{{cite journal|author1=J.E. Lawrence|author2=C.P.W. Pavia|author3=S. Kaing|author4=H.N. Bischel|author5=R.G. Luthy|author6=V.H. Resh|year=2014|title=Recycled Water for Augmenting Urban Streams in Mediterranean-climate Regions: A Potential Approach for Riparian Ecosystem Enhancement|journal=Hydrological Sciences Journal|volume=59|issue=3–4|pages=488–501|doi=10.1080/02626667.2013.818221|s2cid=129362661|doi-access=free|bibcode=2014HydSJ..59..488L }}File:AralShip.jpg, near Aral, Kazakhstan]]
Through the last hundred years, more than half of the Earth's wetlands have been destroyed and have disappeared. These wetlands are important as the habitats of numerous creatures such as mammals, birds, fish, amphibians, and invertebrates. They also support the growing of rice and other food crops. And they provide water filtration and protection from storms and flooding. Freshwater lakes such as the Aral Sea in central Asia have also suffered. It was once the fourth largest freshwater lake in the world. But it has lost more than 58,000 square km of area and vastly increased in salt concentration over the span of three decades.
Subsidence is another result of water scarcity. The U.S. Geological Survey estimates that subsidence has affected more than 17,000 square miles in 45 U.S. states, 80 percent of it due to groundwater usage.{{Cite web|title=Land Subsidence in the United States|url=https://water.usgs.gov/ogw/pubs/fs00165/|access-date=2021-06-15|website=water.usgs.gov}}
Vegetation and wildlife need sufficient freshwater. Marshes, bogs and riparian zones are more clearly dependent upon sustainable water supply. Forests and other upland ecosystems are equally at risk as water becomes less available. In the case of wetlands, a lot of ground has been simply taken from wildlife use to feed and house the expanding human population. Other areas have also suffered from a gradual fall in freshwater inflow as upstream water is diverted for human use.
= Potential for conflict =
Other impacts include growing conflict between users and growing competition for water.{{rp|6}} Examples for the potential for conflict from water scarcity include: Food insecurity in the Middle East and North Africa Region{{Cite journal |last=Barnes |first=Jessica |date=Fall 2020 |title=Water in the Middle East: A Primer |url=https://merip.org/wp-content/uploads/2020/09/MERIP-Primer-on-Water-in-the-Middle-East.pdf |url-status=live |journal=Middle East Report |volume=296 |pages=1–9 |archive-url=https://web.archive.org/web/20201127140347/https://merip.org/wp-content/uploads/2020/09/MERIP-Primer-on-Water-in-the-Middle-East.pdf |archive-date=27 November 2020 |access-date=19 November 2020 |via=Middle East Research and Information Project (MERIP)}} and regional conflicts over scarce water resources.{{Cite web |date=12 October 2019 |title=The Coming Wars for Water |url=https://reportsyndication.news.blog/2019/10/12/the-coming-wars-for-water/ |url-status=live |archive-url=https://web.archive.org/web/20191019173433/https://reportsyndication.news.blog/2019/10/12/the-coming-wars-for-water/ |archive-date=19 October 2019 |access-date=6 January 2020 |website=Report Syndication}}
Causes and contributing factors
= Population growth =
{{Main|2 = Population growth}}
Around fifty years ago, the common view was that water was an infinite resource. At that time, there were fewer than half the current number of people on the planet. People were not as wealthy as today, consumed fewer calories and ate less meat, so less water was needed to produce their food. They required a third of the volume of water we presently take from rivers. Today, the competition for water resources is much more intense. This is because there are now seven billion people on the planet and their consumption of water-thirsty meat is rising. And industry, urbanization, biofuel crops, and water reliant food items are competing more and more for water. In the future, even more water will be needed to produce food because the Earth's population is forecast to rise to 9 billion by 2050.United Nations Press Release POP/952, 13 March 2007. [https://www.un.org/News/Press/docs/2007/pop952.doc.htm World population will increase by 2.5 billion by 2050] {{Webarchive|url=https://web.archive.org/web/20090728233526/http://www.un.org/News/Press/docs//2007/pop952.doc.htm|date=28 July 2009}}
In 2000, the world population was 6.2 billion. The UN estimates that by 2050 there will be an additional 3.5 billion people, with most of the growth in developing countries that already suffer water stress.{{cite web|date=2005-02-24|title=World population to reach 9.1 billion in 2050, UN projects|url=https://www.un.org/apps/news/story.asp?NewsID=13451&Cr=population&Cr1|url-status=live|archive-url=https://web.archive.org/web/20170722162959/http://www.un.org/apps/news/story.asp?NewsID=13451&Cr=population&Cr1|archive-date=22 July 2017|access-date=2009-03-12|publisher=Un.org}} This will increase demand for water unless there are corresponding increases in water conservation and recycling.{{Cite journal|last1=Foster|first1=S. S.|last2=Chilton|first2=P. J.|date=2003-12-29|title=Groundwater – the processes and global significance of aquifer degradation|journal=Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences|volume=358|issue=1440|pages=1957–1972|doi=10.1098/rstb.2003.1380|pmc=1693287|pmid=14728791}} In building on the data presented here by the UN, the World Bank{{cite web|title=Water|url=http://water.worldbank.org/water/|url-status=live|archive-url=https://web.archive.org/web/20120426170221/http://water.worldbank.org/water/|archive-date=26 April 2012|access-date=19 November 2012|publisher=World Bank}} goes on to explain that access to water for producing food will be one of the main challenges in the decades to come. It will be necessary to balance access to water with managing water in a sustainable way. At the same time it will be necessary to take the impact of climate change and other environmental and social variables into account.{{cite web|year=2010|title=Sustaining water for all in a changing climate: World Bank Group Implementation Progress Report|url=http://water.worldbank.org/water/publications/sustaining-water-all-changing-climate-world-bank-group-implementation-progress-report|url-status=live|archive-url=https://web.archive.org/web/20120413214941/http://water.worldbank.org/water/publications/sustaining-water-all-changing-climate-world-bank-group-implementation-progress-report|archive-date=13 April 2012|access-date=2011-10-24|publisher=The World Bank}}
In 60% of European cities with more than 100,000 people, groundwater is being used at a faster rate than it can be replenished.{{cite web|date=1995-05-20|title=Europe's Environment: The Dobris Assessment|url=http://reports.eea.europa.eu/92-826-5409-5/en|url-status=dead|archive-url=https://web.archive.org/web/20080922204930/http://reports.eea.europa.eu/92-826-5409-5/en|archive-date=22 September 2008|access-date=2009-03-12|publisher=Reports.eea.europa.eu}}
==Over-exploitation of groundwater==
{{Main|2 = Groundwater}}
File:Saudi Arabia irrigation.jpg in Saudi Arabia, April 1997. Saudi Arabia is suffering from a major depletion of the water in its underground aquifers.{{cite web|date=22 April 2015|title=What California can learn from Saudi Arabia's water mystery|url=https://www.revealnews.org/article/what-california-can-learn-from-saudi-arabias-water-mystery/|url-status=live|archive-url=https://web.archive.org/web/20151122183436/https://www.revealnews.org/article/what-california-can-learn-from-saudi-arabias-water-mystery/|archive-date=22 November 2015|access-date=9 August 2019|work=Reveal}}]]
The increase in the number of people is increasing competition for water. This is depleting many of the world's major aquifers. It has two causes. One is direct human consumption. The other is agricultural irrigation. Millions of pumps of all sizes are currently extracting groundwater throughout the world. Irrigation in dry areas such as northern China, Nepal and India draws on groundwater. And it is extracting groundwater at an unsustainable rate. Many cities have experienced aquifer drops of between 10 and 50 meters. They include Mexico City, Bangkok, Beijing, Chennai and Shanghai.{{cite web|date=1998-03-31|title=Groundwater in Urban Development|url=http://www-wds.worldbank.org/external/default/main?pagePK=64193027&piPK=64187937&theSitePK=523679&menuPK=64187510&searchMenuPK=64187283&siteName=WDS&entityID=000009265_3980429110739|url-status=live|archive-url=https://web.archive.org/web/20071016181203/http://www-wds.worldbank.org/external/default/main?pagePK=64193027&piPK=64187937&theSitePK=523679&menuPK=64187510&searchMenuPK=64187283&siteName=WDS&entityID=000009265_3980429110739|archive-date=16 October 2007|access-date=2009-03-12|publisher=Wds.worldbank.org|pages=1}}
Until recently, groundwater was not a highly used resource. In the 1960s, more and more groundwater aquifers developed.{{Cite web|title=Archived copy|url=https://unesdoc.unesco.org/ark:/48223/pf0000134433|url-status=live|archive-url=https://web.archive.org/web/20201021170543/https://unesdoc.unesco.org/ark:/48223/pf0000134433|archive-date=21 October 2020|access-date=2020-09-18|website=unesdoc.unesco.org}} Improved knowledge, technology and funding have made it possible to focus more on drawing water from groundwater resources instead of surface water. These made the agricultural groundwater revolution possible. They expanded the irrigation sector which made it possible to increase food production and development in rural areas.Giordano, M. and Volholth, K. (ed.) 2007. The Agricultural Groundwater Revolution. Wallingford, UK, Centre for Agricultural Bioscience International (CABI). Groundwater supplies nearly half of all drinking water in the world.WWAP (World Water Assessment Programme). 2009. Water in a Changing World. World Water Development Report 3. Paris/London, UNESCO Publishing/Earthscan. The large volumes of water stored underground in most aquifers have a considerable buffer capacity. This makes it possible to withdraw water during periods of drought or little rainfall. This is crucial for people that live in regions that cannot depend on precipitation or surface water for their only supplies. It provides reliable access to water all year round. As of 2010, the world's aggregated groundwater abstraction is estimated at 1,000 km3 per year. Of this 67% goes on irrigation, 22% on domestic purposes and 11% on industrial purposes. The top ten major consumers of abstracted water make up 72% of all abstracted water use worldwide. They are India, China, United States of America, Pakistan, Iran, Bangladesh, Mexico, Saudi Arabia, Indonesia, and Italy.
Goundwater sources are quite plentiful. But one major area of concern is the renewal or recharge rate of some groundwater sources. Extracting from non-rewable groundwater sources could exhaust them if they are not properly monitored and managed.Foster, S. and Loucks, D. 2006. Non-renewable Groundwater Resources. UNESCO-IHP Groundwater series No. 10. Paris, UNESCO. Increasing use of groundwater can also reduce water quality over time. Groundwater systems often show falls in natural outflows, stored volumes, and water levels as well as water degradation. Groundwater depletion can cause harm in many ways. These include more costly groundwater pumping and changes in salinity and other types of water quality. They can also lead to land subsidence, degraded springs and reduced baseflows.
= Expansion of agricultural and industrial users =
File:20230522 Colorado River water usage - livestock crops etc.svg basin in a typical year,{{cite news |last1=Shao |first1=Elena |title=The Colorado River Is Shrinking. See What's Using All the Water. |url=https://www.nytimes.com/interactive/2023/05/22/climate/colorado-river-water.html |work=The New York Times |date=May 22, 2023 |archive-url=https://web.archive.org/web/20230523164140/https://www.nytimes.com/interactive/2023/05/22/climate/colorado-river-water.html |archive-date=May 23, 2023 |url-status=live }} ● Shao cites {{cite journal |last1=Richter |first1=Brian D. |last2=Bartak |first2=Dominique |last3=Cladwell |first3=Peter |last4=Davis |first4=Kyle Frankel |last5=Debaere |first5=Peter |last6=Hoekstra |first6=Arjen Y. |last7=Li |first7=Tianshu |last8=Marston |first8=Landon |last9=McManamay |first9=Ryan |last10=Mekonnen |first10=Mesfin |last11=Ruddell |first11=Benjamin L. |last12=Rushforth |first12=Richard R. |last13=Troy |first13=Tara J. |display-authors=4 |title=Water scarcity and fish imperilment driven by beef production |journal=Nature Sustainability |date=April 2020 |volume=3 |issue=4 |pages=319–328 |doi=10.1038/s41893-020-0483-z |bibcode=2020NatSu...3..319R |s2cid=211730442 |url=https://www.nature.com/articles/s41893-020-0483-z.epdf}} contributing to a severe water shortage and causing states to reach a conservation and resource-sharing agreement with the federal government.{{cite news |last1=Flavelle |first1=Christopher |title=A Breakthrough Deal to Keep the Colorado River From Going Dry, for Now |url=https://www.nytimes.com/2023/05/22/climate/colorado-river-deal.html |newspaper=The New York Times |date=May 22, 2023 |archive-url=https://web.archive.org/web/20230524092223/https://www.nytimes.com/2023/05/22/climate/colorado-river-deal.html |archive-date=May 24, 2023 |url-status=live }} Most of the Colorado River basin water used by humans is used to grow feed for livestock—more than four times the amount used for crops for direct human consumption.]]
The main cause of water scarcity as a result of consumption is the extensive use of water in agriculture/livestock breeding and industry. People in developed countries generally use about 10 times more water a day than people in developing countries.{{cite web|date=8 March 2015|title=Why freshwater shortages will cause the next great global crisis|url=https://www.theguardian.com/environment/2015/mar/08/how-water-shortages-lead-food-crises-conflicts|access-date=3 January 2018|work=The Guardian|archive-date=11 November 2019|archive-url=https://web.archive.org/web/20191111192031/https://www.theguardian.com/environment/2015/mar/08/how-water-shortages-lead-food-crises-conflicts|url-status=live}} A large part of this is indirect use in water-intensive agricultural and industrial production of consumer goods. Examples are fruit, oilseed crops and cotton. Many of these production chains are globalized, So a lot of water consumption and pollution in developing countries occurs to produce goods for consumption in developed countries.{{cite web|date=8 January 2012|title=Water, bron van ontwikkeling, macht en conflict|url=http://www.ncdo.nl/sites/default/files/Globaliseringsreeks%203%20Water.pdf|url-status=live|archive-url=https://web.archive.org/web/20190412100919/http://www.ncdo.nl/sites/default/files/Globaliseringsreeks%203%20Water.pdf|archive-date=12 April 2019|access-date=1 January 2018|publisher=NCDO, Netherlands}}
Many aquifers have been over-pumped and are not recharging quickly. This does not use up the total fresh water supply. But it means that much has become polluted, salted, unsuitable or otherwise unavailable for drinking, industry and agriculture. To avoid a global water crisis, farmers will have to increase productivity to meet growing demands for food. At the same time industry and cities find will have to find ways to use water more efficiently.{{Cite book|last=Haie|first=Naim|url=https://link.springer.com/content/pdf/bfm%3A978-981-15-6284-6%2F1.pdf|title=Transparent Water Management Theory: Sefficiency in Sequity|publisher=Springer|year=2020}}
Business activities such as tourism are continuing to expand. They create a need for increases in water supply and sanitation. This in turn can lead to more pressure on water resources and natural ecosystems. The approximate 50% growth in world energy use by 2040 will also increase the need for efficient water use. It may means some water use shifts from irrigation to industry. This is because thermal power generation uses water for steam generation and cooling.{{cite book | last1=Smith | first1=J.B. | last2=Tirpak | first2=D.A. | title=The Potential Effects of Global Climate Change on the United States: Report to Congress | publisher=U.S. Environmental Protection Agency | issue=v. 1 | year=1989 | url=https://books.google.com/books?id=seHYG5v4GZ4C&pg=PA172 | access-date=16 May 2023 | page=172}}
=Water pollution=
{{excerpt|water pollution|paragraphs=1-2|file=no}}
=Climate change=
{{Further|Effects of climate change on the water cycle|Water security#Climate change}}
Climate change could have a big impact on water resources around the world because of the close connections between the climate and hydrological cycle. Rising temperatures will increase evaporation and lead to increases in precipitation. However there will be regional variations in rainfall. Both droughts and floods may become more frequent and more severe in different regions at different times. There will be generally less snowfall and more rainfall in a warmer climate.{{Cite web |date=2016-07-01 |title=Climate Change Indicators: Snowfall |url=https://www.epa.gov/climate-indicators/climate-change-indicators-snowfall |access-date=2023-07-10 |website=U.S. Environmental Protection Agency |language=en}} Changes in snowfall and snow melt in mountainous areas will also take place. Higher temperatures will also affect water quality in ways that scientists do not fully understand. Possible impacts include increased eutrophication. Climate change could also boost demand for irrigation systems in agriculture. There is now ample evidence that greater hydrologic variability and climate change have had a profound impact on the water sector, and will continue to do so. This will show up in the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels.{{cite web|date=2009|publisher=World Bank|url=http://water.worldbank.org/water/publications/water-and-climate-change-understanding-risks-and-making-climate-smart-investment-decisi|title=Water and Climate Change: Understanding the Risks and Making Climate-Smart Investment Decisions|access-date=2011-10-24|archive-date=7 April 2012|archive-url=https://web.archive.org/web/20120407105752/http://water.worldbank.org/water/publications/water-and-climate-change-understanding-risks-and-making-climate-smart-investment-decisi/|url-status=deviated}}
The United Nations' FAO states that by 2025 1.9 billion people will live in countries or regions with absolute water scarcity. It says two thirds of the world's population could be under stress conditions.{{cite web |url=http://www.fao.org/nr/water/issues/scarcity.html |website=FAO |title=Hot issues: Water scarcity |archive-url=https://web.archive.org/web/20121025075726/http://www.fao.org/nr/water/issues/scarcity.html |archive-date=25 October 2012 |access-date=27 August 2013}} The World Bank says that climate change could profoundly alter future patterns of water availability and use. This will make water stress and insecurity worse, at the global level and in sectors that depend on water.{{cite web|title=Water and Climate Change: Understanding the Risks and Making Climate-Smart Investment Decisions|url=http://water.worldbank.org/water/publications/water-and-climate-change-understanding-risks-and-making-climate-smart-investment-decisi|access-date=24 October 2011|pages=21–24 |website=World Bank |date=2009 |archive-date=7 April 2012|archive-url=https://web.archive.org/web/20120407105752/http://water.worldbank.org/water/publications/water-and-climate-change-understanding-risks-and-making-climate-smart-investment-decisi/|url-status=deviated}}
Scientists have found that population change is four times more important than long-term climate change in its effects on water scarcity.
==Retreat of mountain glaciers==
{{excerpt|Retreat of glaciers since 1850#Water supply}}
Options for improvements
= Supply and demand side management =
{{Main|Water resource management|Integrated water resources management}}
A review in 2006 stated that "It is surprisingly difficult to determine whether water is truly scarce in the physical sense at a global scale (a supply problem) or whether it is available but should be used better (a demand problem)".{{Cite journal |last=Rijsberman |first=Frank R. |date=2006 |title=Water scarcity: Fact or fiction? |url=https://linkinghub.elsevier.com/retrieve/pii/S0378377405002854 |journal=Agricultural Water Management |language=en |volume=80 |issue=1–3 |pages=5–22 |doi=10.1016/j.agwat.2005.07.001|bibcode=2006AgWM...80....5R }}
The International Resource Panel of the UN states that governments have invested heavily in inefficient solutions. These are mega-projects like dams, canals, aqueducts, pipelines and water reservoirs. They are generally neither environmentally sustainable nor economically viable. According to the panel, the most cost-effective way of decoupling water use from economic growth is for governments to create holistic water management plans. These would take into account the entire water cycle: from source to distribution, economic use, treatment, recycling, reuse and return to the environment.
In general, there is enough water on an annual and global scale. The issue is more of variation of supply by time and by region. Reservoirs and pipelines would deal with this variable water supply. Well-planned infrastructure with demand side management is necessary. Both supply-side and demand-side management have advantages and disadvantages.{{citation needed|date=September 2019}}
= Co-operation between countries=
{{Further|Water conflict|International waters}}
Lack of cooperation may give rise to regional water conflicts. This is especially the case in developing countries. The main reason is disputes regarding the availability, use and management of water. One example is the dispute between Egypt and Ethiopia over the Grand Ethiopian Renaissance Dam which escalated in 2020.{{cite news |last1=Walsh |first1=Decian |title=For Thousands of Years, Egypt Controlled the Nile. A New Dam Threatens That |url=https://www.nytimes.com/interactive/2020/02/09/world/africa/nile-river-dam.html |newspaper=New York Times |date=9 February 2020 |archive-url=https://web.archive.org/web/20200210015121/https://www.nytimes.com/interactive/2020/02/09/world/africa/nile-river-dam.html |archive-date=10 February 2020 |url-status=live }}{{cite news |title=Are Egypt and Ethiopia heading for a water war? |url=https://www.theweek.co.uk/107468/are-egypt-and-ethiopia-heading-for-a-water-war |work=The Week |date=8 July 2020 |access-date=18 July 2020 |archive-date=18 July 2020 |archive-url=https://web.archive.org/web/20200718151238/https://www.theweek.co.uk/107468/are-egypt-and-ethiopia-heading-for-a-water-war |url-status=live }} Egypt sees the dam as an existential threat, fearing that the dam will reduce the amount of water it receives from the Nile.{{cite news |title=Row over Africa's largest dam in danger of escalating, warn scientists |url=https://www.nature.com/articles/d41586-020-02124-8 |work=Nature |date=15 July 2020 |access-date=18 July 2020 |archive-date=18 July 2020 |archive-url=https://web.archive.org/web/20200718012114/https://www.nature.com/articles/d41586-020-02124-8 |url-status=live }}
=Water conservation=
{{excerpt|Water conservation|paragraphs=1,2}}
=Expanding sources of usable water=
{{excerpt|Water resources#Artificial sources of usable water}}
== Wastewater treatment and reclaimed water ==
{{excerpt|Reclaimed water|paragraphs=1|file=no}}
{{excerpt|Wastewater treatment|paragraphs=1,2|file=no}}
== Desalination ==
{{Excerpt|Desalination|paragraphs=1|file=no}}
=Virtual water trade=
{{excerpt|virtual water|paragraphs=1,2|file=no}}
Regional examples
=Overview of regions =
File:Nord-Krim-Kanal.png, which provided 85% of Crimea's fresh water.{{cite news |title=Pray For Rain: Crimea's Dry-Up A Headache For Moscow, Dilemma For Kyiv |url=https://www.rferl.org/a/pray-for-rain-crimea-s-dry-up-a-headache-for-moscow-dilemma-for-kyiv/30515986.html |work=Radio Free Europe/Radio Liberty |date=29 March 2020 |access-date=14 February 2021 |archive-date=27 February 2021 |archive-url=https://web.archive.org/web/20210227081645/https://www.rferl.org/a/pray-for-rain-crimea-s-dry-up-a-headache-for-moscow-dilemma-for-kyiv/30515986.html |url-status=live }}]]
The Consultative Group on International Agricultural Research (CGIAR) published a map showing the countries and regions suffering most water stress.{{cite web|title=Retrieved 2009-01-19|url=http://www.cgiar.org/enews/june2007/images_06_07/story12c.gif|url-status=dead|archive-url=https://web.archive.org/web/20070708002409/http://www.cgiar.org/enews/june2007/images_06_07/story12c.gif|archive-date=2007-07-08}} They are North Africa, the Middle East,Jameel M. Zayed, No Peace Without Water – The Role of Hydropolitics in the Israel-Palestine Conflict http://www.jnews.org.uk/commentary/“no-peace-without-water”-–-the-role-of-hydropolitics-in-the-israel-palestine-conflict India, Central Asia, China, Chile, Colombia, South Africa, Canada and Australia. Water scarcity is also increasing in South Asia.World Bank [http://siteresources.worldbank.org/SOUTHASIAEXT/Resources/223546-1171488994713/3455847-1227656528691/SARlifelineatrisk.pdf Climate Change Water: South Asia’s Lifeline at Risk], World Bank Washington D.C As of 2016, about four billion people, or two thirds of the world's population, were facing severe water scarcity.{{Cite journal|last1=Mekonnen|first1=Mesfin M.|last2=Hoekstra|first2=Arjen Y.|title=Four billion people facing severe water scarcity|journal=Science Advances|year=2016|volume=2|issue=2|pages=e1500323|doi=10.1126/sciadv.1500323|pmc=4758739|pmid=26933676|bibcode=2016SciA....2E0323M}}
The more developed countries of North America, Europe and Russia will not see a serious threat to water supply by 2025 in general. This is not only because of their relative wealth. Their populations will also be more in line with available water resources.{{citation needed|date=September 2015}} North Africa, the Middle East, South Africa and northern China will face very severe water shortages. This is due to physical scarcity and too many people for the water that is available.{{citation needed|date=September 2015}} Most of South America, Sub-Saharan Africa, southern China and India will face water supply shortages by 2025. For these regions, water scarcity will be due to economic constraints on developing safe drinking water, and excessive population growth.{{citation needed|date=September 2015}}
= Africa =
File:Water Crisis.jpg warning]]File:AfriqueStressHydrique2025.jpg{{excerpt|Water scarcity in Africa|paragraphs=1,2|file=no}}
== West Africa and North Africa ==
Water scarcity in Yemen (see: Water supply and sanitation in Yemen) is a growing problem. Population growth and climate change are among the causes. Others are poor water management, shifts in rainfall, water infrastructure deterioration, poor governance, and other anthropogenic effects. As of 2011, water scarcity is having political, economic and social impacts in Yemen. As of 2015,{{Cite web|date=2017-09-12|title=Running out of water: Conflict and water scarcity in Yemen and Syria|url=https://www.atlanticcouncil.org/blogs/menasource/running-out-of-water-conflict-and-water-scarcity-in-yemen-and-syria/|access-date=2021-02-24|website=Atlantic Council|language=en-US|archive-date=8 August 2020|archive-url=https://web.archive.org/web/20200808182924/https://www.atlanticcouncil.org/blogs/menasource/running-out-of-water-conflict-and-water-scarcity-in-yemen-and-syria/|url-status=live}} Yemen is one of the countries suffering most from water scarcity. Most people in Yemen experience water scarcity for at least one month a year.
In Nigeria, some reports have suggested that increase in extreme heat, drought and the shrinking of Lake Chad is causing water shortage and environmental migration. This is forcing thousands to migrate to neighboring Chad and towns.{{Cite web|title=The Carbon Brief Profile: Nigeria|date=21 August 2020|url=https://www.carbonbrief.org/the-carbon-brief-profile-nigeria|access-date=30 November 2020|archive-date=2 December 2020|archive-url=https://web.archive.org/web/20201202023005/https://www.carbonbrief.org/the-carbon-brief-profile-nigeria|url-status=live}}
= Asia =
A major report in 2019 by more than 200 researchers, found that the Himalayan glaciers could lose 66 percent of their ice by 2100.{{cite news|date=19 June 2019|title=Himalayan glaciers melting at alarming rate, spy satellites show|work=National Geographic|url=https://www.nationalgeographic.com/environment/2019/06/himalayan-glaciers-melting-alarming-rate-spy-satellites-show/|access-date=18 July 2020|archive-date=18 July 2020|archive-url=https://web.archive.org/web/20200718173417/https://www.nationalgeographic.com/environment/2019/06/himalayan-glaciers-melting-alarming-rate-spy-satellites-show/|url-status=dead}} These glaciers are the sources of Asia's biggest rivers – Ganges, Indus, Brahmaputra, Yangtze, Mekong, Salween and Yellow. Approximately 2.4 billion people live in the drainage basin of the Himalayan rivers.[https://web.archive.org/web/20090215045754/http://www.peopleandplanet.net/pdoc.php?id=3024 Big melt threatens millions, says UN]. peopleandplanet.net. 4 June 2007 India, China, Pakistan, Bangladesh, Nepal and Myanmar could experience floods followed by droughts in coming decades. In India alone, the Ganges provides water for drinking and farming for more than 500 million people.{{cite web|date=31 December 2004|title=Ganges, Indus may not survive: climatologists|url=http://www.rediff.com/news/2007/jul/24indus.htm|access-date=10 March 2011|work=Rediff.com|archive-date=11 October 2017|archive-url=https://web.archive.org/web/20171011181913/http://www.rediff.com/news/2007/jul/24indus.htm|url-status=live}}{{cite web|date=24 July 2007|title=Glaciers melting at alarming speed|url=http://english.peopledaily.com.cn/90001/90781/90879/6222327.html|access-date=10 March 2011|publisher=English.peopledaily.com.cn|archive-date=25 December 2018|archive-url=https://web.archive.org/web/20181225162441/http://en.people.cn/90001/90781/90879/6222327.html|url-status=live}}{{cite news|last=Singh|first=Navin|date=10 November 2004|title=Himalaya glaciers melt unnoticed|work=BBC News|url=http://news.bbc.co.uk/2/hi/science/nature/3998967.stm|access-date=10 March 2011|archive-date=25 February 2020|archive-url=https://web.archive.org/web/20200225131425/http://news.bbc.co.uk/2/hi/science/nature/3998967.stm|url-status=live}}
Even with the overpumping of its aquifers, China is developing a grain deficit. When this happens, it will almost certainly drive grain prices upward. Most of the 3 billion people projected to be added worldwide by mid-century will be born in countries already experiencing water shortages. Unless population growth can be slowed quickly, it is feared that there may not be a practical non-violent or humane solution to the emerging world water shortage.{{cite web|author=Brown, Lester R.|date=27 September 2006|title=Water Scarcity Crossing National Borders|url=http://www.earth-policy.org/Books/Seg/PB2ch03_ss6.htm|archive-url=https://web.archive.org/web/20090331153400/http://www.earth-policy.org/Books/Seg/PB2ch03_ss6.htm|archive-date=2009-03-31|access-date=10 March 2011|publisher=Earth Policy Institute}}Brown, Lester R.
(8 September 2002) [https://archive.today/20070704120613/http://www.greatlakesdirectory.org/zarticles/080902_water_shortages.htm Water Shortages May Cause Food Shortages]. Greatlakesdirectory.org. Retrieved on 27 August 2013.
It is highly likely that climate change in Turkey will cause its southern river basins to be water scarce before 2070, and increasing drought in Turkey.{{Cite web|title=Climate|url=http://climatechangeinturkey.com/effects-of-climate-change-water.html|access-date=2021-02-19|website=climatechangeinturkey.com|archive-date=22 October 2020|archive-url=https://web.archive.org/web/20201022015020/http://climatechangeinturkey.com/effects-of-climate-change-water.html|url-status=live}}
= America =
{{see also|Water scarcity in the United States}}
File:Folsom Lake 58, Nov. 2015 - panoramio.jpg reservoir during the drought in California in 2015{{cite web|last=Alexander|first=Kurtis|date=19 May 2015|title=California drought: People support water conservation, in theory|url=http://www.sfgate.com/bayarea/article/California-drought-People-support-water-6271681.php|website=SF Gate|access-date=18 July 2020|archive-date=24 August 2020|archive-url=https://web.archive.org/web/20200824032931/https://www.sfgate.com/bayarea/article/California-drought-People-support-water-6271681.php|url-status=live}}]]
In the Rio Grande Valley, intensive agribusiness has made water scarcity worse. It has sparked jurisdictional disputes regarding water rights on both sides of the U.S.-Mexico border. Scholars such as Mexico's Armand Peschard-Sverdrup have argued that this tension has created the need for new strategic transnational water management.{{cite book|last1=Peschard-Sverdrup|first1=Armand|title=U.S.-Mexico Transboundary Water Management: The Case of the Rio Grande/Rio Bravo|date=7 January 2003|publisher=Center for Strategic & International Studies|isbn=978-0892064243|edition=1}} Some have likened the disputes to a war over diminishing natural resources.{{cite news|last1=Yardley|first1=Jim|date=19 April 2002|title=Water Rights War Rages on Faltering Rio Grande|work=The New York Times|url=https://www.nytimes.com/2002/04/19/us/water-rights-war-rages-on-faltering-rio-grande.html|access-date=5 April 2020|archive-date=13 September 2020|archive-url=https://web.archive.org/web/20200913152007/https://www.nytimes.com/2002/04/19/us/water-rights-war-rages-on-faltering-rio-grande.html|url-status=live}}{{cite web|last1=Guido|first1=Zack|title=Drought on the Rio Grande|url=https://www.climate.gov/news-features/features/drought-rio-grande|access-date=5 April 2020|website=Climate.gov|publisher=National Oceanic and Atmospheric Administration|archive-date=22 February 2020|archive-url=https://web.archive.org/web/20200222232633/https://www.climate.gov/news-features/features/drought-rio-grande|url-status=live}}
The west coast of North America, which gets much of its water from glaciers in mountain ranges such as the Rocky Mountains and Sierra Nevada, is also vulnerable.{{cite web|date=18 March 2008|title=Glaciers Are Melting Faster Than Expected, UN Reports|url=https://www.sciencedaily.com/releases/2008/03/080317154235.htm|access-date=10 March 2011|publisher=Sciencedaily.com|archive-date=15 October 2019|archive-url=https://web.archive.org/web/20191015192025/https://www.sciencedaily.com/releases/2008/03/080317154235.htm|url-status=live}}Schoch, Deborah (2 May 2008) [http://www.latimes.com/news/local/la-me-snowpack2-2008may02,0,6563964.story Water shortage worst in decades, official says] {{Webarchive|url=https://web.archive.org/web/20081007231102/http://www.latimes.com/news/local/la-me-snowpack2-2008may02%2C0%2C6563964.story |date=7 October 2008 }}, Los Angeles Times.
= Australia =
By far the largest part of Australia is desert or semi-arid lands commonly known as the outback.{{cite magazine|date=21 February 2019|title='A Harbinger of Things to Come': Farmers in Australia Struggle With Its Hottest Drought Ever|magazine=Time|url=https://time.com/longform/australia-drought-photos/|access-date=18 July 2020|archive-date=1 August 2020|archive-url=https://web.archive.org/web/20200801221638/https://time.com/longform/australia-drought-photos/|url-status=live}} Water restrictions are in place in many regions and cities of Australia in response to chronic shortages resulting from drought. Environmentalist Tim Flannery predicted that Perth in Western Australia could become the world's first ghost metropolis. This would mean it was an abandoned city with no more water to sustain its population, said Flannery, who was Australian of the year 2007.{{cite news |author=Ayre, Maggie |date=3 May 2007 |title=Metropolis strives to meet its thirst |url=http://news.bbc.co.uk/2/hi/science/nature/6620919.stm |url-status=live |archive-url=https://web.archive.org/web/20180717160804/http://news.bbc.co.uk/2/hi/science/nature/6620919.stm |archive-date=17 July 2018 |access-date=2 December 2011 |work=BBC News}} In 2010, Perth suffered its second-driest winter on record{{cite news|date=31 August 2010|title=More winter blues as rainfall dries up|url=http://www.abc.net.au/news/stories/2010/08/31/2998259.htm?site=perth|access-date=13 January 2011|newspaper=ABC News|archive-date=12 May 2013|archive-url=https://web.archive.org/web/20130512112353/http://www.abc.net.au/news/stories/2010/08/31/2998259.htm?site=perth|url-status=dead|last1=Waring|first1=Karen}} and the water corporation tightened water restrictions for spring.{{cite web|date=23 September 2010|title=Saving water in spring|url=http://www.watercorporation.com.au/m/media_detail.cfm?id=3656|url-status=dead|archive-url=https://web.archive.org/web/20110223014312/http://watercorporation.com.au/m/media_detail.cfm?id=3656|archive-date=23 February 2011|access-date=13 January 2011|publisher=Water corporation (Western Australia)}}
Some countries have already proven that decoupling water use from economic growth is possible. For example, in Australia, water consumption declined by 40% between 2001 and 2009 while the economy grew by more than 30%.{{cite web|date=21 March 2016|title=Half the world to face severe water stress by 2030 unless water use is "decoupled" from economic growth, says International Resource Panel|url=https://www.unenvironment.org/news-and-stories/press-release/half-world-face-severe-water-stress-2030-unless-water-use-decoupled|url-status=live|archive-url=https://web.archive.org/web/20190306044334/https://www.unenvironment.org/news-and-stories/press-release/half-world-face-severe-water-stress-2030-unless-water-use-decoupled|archive-date=6 March 2019|access-date=11 January 2018|publisher=UN Environment}}
=By country=
Water scarcity or water crisis in particular countries:
{{World topic|Water scarcity in|title=Water scarcity by country|noredlinks=yes|state=expanded}}
{{World topic|Water crisis in|title=Water crisis by country|noredlinks=yes|state=expanded}}
{{Water supply and sanitation by country|state=collapsed}}
Society and culture
=Global goals =
File:Freshwater-withdrawals-as-a-share-of-internal-resources-2014.svg
{{Main|Sustainable Development Goal 6}}
Sustainable Development Goal 6 aims for clean water and sanitation for all.{{cite web|title=Goal 6: Clean water and sanitation|url=http://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-6-clean-water-and-sanitation.html|url-status=live|archive-url=https://web.archive.org/web/20200409110606/https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-6-clean-water-and-sanitation.html|archive-date=9 April 2020|access-date=28 September 2015|website=UNDP}} It is one of 17 Sustainable Development Goals established by the United Nations General Assembly in 2015. The fourth target of SDG 6 refers to water scarcity. It states: "By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity".United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development ([https://undocs.org/A/RES/71/313 A/RES/71/313])
See also
- {{annotated link|Peak water}}
- {{annotated link|Water conservation}}
- {{annotated link|Water footprint}}
- {{annotated link|Water issues in developing countries}}
- {{annotated link|Water security}}
- {{in title|water crisis}}
References
{{Reflist}}
External links
{{wikibooks|Drinking water}}
{{portal-inline|Environment}}
{{portal-inline|Water}}
{{portal-inline|World}}
- [https://www.worldbank.org/en/topic/water The World Bank's work and publications on water resources]
{{Human impact on the environment}}
{{Population}}
{{deforestation and desertification}}
{{Doomsday}}
Category:Climate change adaptation
Category:Environmental economics
Category:Environmental issues with water