Weierstrass–Enneper parameterization

{{Short description|Construction for minimal surfaces}}

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.

File:Weierstrass parameterization facilities fabrication of periodic minimal surfaces.jpg

Let f and g be functions on either the entire complex plane or the unit disk, where g is meromorphic and f is analytic, such that wherever g has a pole of order m, f has a zero of order 2m (or equivalently, such that the product f g^2 is holomorphic), and let c_1,c_2,c_3 be constants. Then the surface with coordinates (x_1, x_2, x_3) is minimal, where the x_k are defined using the real part of a complex integral, as follows:

\begin{align}

x_k(\zeta) &{}= \mathrm{Re} \left\{ \int_{0}^{\zeta} \varphi_{k}(z) \, dz \right\} + c_k , \qquad k=1,2,3 \\

\varphi_1 &{}= f(1-g^2)/2 \\

\varphi_2 &{}= i f(1+g^2)/2 \\

\varphi_3 &{}= fg

\end{align}

The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.{{cite book |last1=Dierkes |first1=U. |last2=Hildebrandt |first2=S. |last3=Küster |first3=A. |last4=Wohlrab |first4=O. |title=Minimal surfaces |volume=I |page=108 |publisher=Springer |year=1992 |isbn=3-540-53169-6 }}

For example, Enneper's surface has {{math|1=f(z) = 1}}, {{math|1=g(z) = zm}}.

Parametric surface of complex variables

The Weierstrass-Enneper model defines a minimal surface X (\Reals^3) on a complex plane (\Complex). Let \omega=u+v i (the complex plane as the uv space), the Jacobian matrix of the surface can be written as a column of complex entries:

\mathbf{J} = \begin{bmatrix}

\left( 1 - g^2(\omega) \right)f(\omega) \\

i\left( 1+ g^2(\omega) \right)f(\omega) \\

2g(\omega) f(\omega)

\end{bmatrix}

where f(\omega) and g(\omega) are holomorphic functions of \omega.

The Jacobian \mathbf{J} represents the two orthogonal tangent vectors of the surface:{{cite journal |last1=Andersson |first1=S. |last2=Hyde |first2=S. T. |last3=Larsson |first3=K. |last4=Lidin |first4=S. |title=Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers |journal=Chem. Rev. |volume=88 |issue=1 |pages=221–242 |year=1988 |doi=10.1021/cr00083a011 }}

\mathbf{X_u} = \begin{bmatrix}

\operatorname{Re}\mathbf{J}_1 \\

\operatorname{Re}\mathbf{J}_2 \\

\operatorname{Re} \mathbf{J}_3

\end{bmatrix} \;\;\;\;

\mathbf{X_v} = \begin{bmatrix}

-\operatorname{Im}\mathbf{J}_1 \\

-\operatorname{Im}\mathbf{J}_2 \\

-\operatorname{Im} \mathbf{J}_3

\end{bmatrix}

The surface normal is given by

\mathbf{\hat{n}} =

\frac{\mathbf{X_u}\times \mathbf{X_v}}

\mathbf{X_u}\times \mathbf{X_v}
=

\frac{1}{| g|^2+1}

\begin{bmatrix}

2\operatorname{Re} g \\

2\operatorname{Im} g \\

| g|^2-1

\end{bmatrix}

The Jacobian \mathbf{J} leads to a number of important properties: \mathbf{X_u} \cdot \mathbf{X_v}=0, \mathbf{X_u}^2 = \operatorname{Re}(\mathbf{J}^2), \mathbf{X_v}^2 = \operatorname{Im}(\mathbf{J}^2), \mathbf{X_{uu}} + \mathbf{X_{vv}}=0. The proofs can be found in Sharma's essay: The Weierstrass representation always gives a minimal surface.{{cite arXiv|last=Sharma |first=R. |title=The Weierstrass Representation always gives a minimal surface |eprint=1208.5689 |date=2012 |class=math.DG }} The derivatives can be used to construct the first fundamental form matrix:

\begin{bmatrix}

\mathbf{X_u} \cdot \mathbf{X_u} & \;\; \mathbf{X_u} \cdot \mathbf{X_v}\\

\mathbf{X_v} \cdot \mathbf{X_u} & \;\;\mathbf{X_v} \cdot \mathbf{X_v}

\end{bmatrix}=

\begin{bmatrix}

1 & 0 \\

0 & 1

\end{bmatrix}

and the second fundamental form matrix

\begin{bmatrix}

\mathbf{X_{uu}} \cdot \mathbf{\hat{n}} & \;\; \mathbf{X_{uv}} \cdot \mathbf{\hat{n}}\\

\mathbf{X_{vu}} \cdot \mathbf{\hat{n}} & \;\; \mathbf{X_{vv}} \cdot \mathbf{\hat{n}}

\end{bmatrix}

Finally, a point \omega_t on the complex plane maps to a point \mathbf{X} on the minimal surface in \R^3 by

\mathbf{X}= \begin{bmatrix}

\operatorname{Re} \int_{\omega_0}^{\omega_ t}\mathbf{J}_1 d\omega\\

\operatorname{Re} \int_{\omega_0}^{\omega_ t} \mathbf{J}_2 d\omega\\

\operatorname{Re} \int_{\omega_0}^{\omega_ t} \mathbf{J}_3 d\omega

\end{bmatrix}

where \omega_0 = 0 for all minimal surfaces throughout this paper except for Costa's minimal surface where \omega_0=(1+i)/2.

Embedded minimal surfaces and examples

The classical examples of embedded complete minimal surfaces in \mathbb{R}^3 with finite topology include the plane, the catenoid, the helicoid, and the Costa's minimal surface. Costa's surface involves Weierstrass's elliptic function \wp :{{cite book |last=Lawden |first=D. F. |title=Elliptic Functions and Applications |series=Applied Mathematical Sciences |volume=80 |publisher=Springer |location=Berlin |year=2011 |isbn=978-1-4419-3090-3 }}

g(\omega)=\frac{A}{\wp' (\omega)}

f(\omega)= \wp(\omega)

where A is a constant.{{cite book |last1=Abbena |first1=E. |last2=Salamon |first2=S. |last3=Gray |first3=A. |chapter=Minimal Surfaces via Complex Variables |title=Modern Differential Geometry of Curves and Surfaces with Mathematica |publisher=CRC Press |location=Boca Raton |year=2006 |isbn=1-58488-448-7 |pages=719–766 }}

= Helicatenoid =

Choosing the functions f(\omega) = e^{-i \alpha}e^{\omega/A} and g(\omega) = e^{-\omega/A}, a one parameter family of minimal surfaces is obtained.

\varphi_1 = e^{-i \alpha} \sinh\left(\frac{\omega}{A}\right)

\varphi_2 = i e^{-i \alpha} \cosh\left(\frac{\omega}{A}\right)

\varphi_3 = e^{-i \alpha}

\mathbf{X}(\omega) =

\operatorname{Re}

\begin{bmatrix}

e^{-i\alpha} A \cosh \left( \frac{\omega}{A} \right) \\

i e^{-i\alpha} A \sinh \left( \frac{\omega}{A} \right) \\

e^{-i\alpha} \omega \\

\end{bmatrix}

=

\cos(\alpha)

\begin{bmatrix}

A \cosh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \cos \left( \frac{\operatorname{Im}(\omega)}{A} \right)\\

- A \cosh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \sin \left( \frac{\operatorname{Im}(\omega)}{A} \right) \\

\operatorname{Re}(\omega) \\

\end{bmatrix} +

\sin(\alpha)

\begin{bmatrix}

A \sinh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \sin \left( \frac{\operatorname{Im}(\omega)}{A} \right)\\

A \sinh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \cos \left( \frac{\operatorname{Im}(\omega)}{A} \right) \\

\operatorname{Im}(\omega) \\

\end{bmatrix}

Choosing the parameters of the surface as \omega = s + i(A \phi):

\mathbf{X}(s,\phi)=

\cos(\alpha)

\begin{bmatrix}

A \cosh \left( \frac{s}{A} \right) \cos \left( \phi \right)\\

- A \cosh \left( \frac{s}{A} \right) \sin \left( \phi \right) \\

s \\

\end{bmatrix} +

\sin(\alpha)

\begin{bmatrix}

A \sinh \left( \frac{s}{A} \right) \sin \left( \phi \right)\\

A \sinh \left( \frac{s}{A} \right) \cos \left( \phi \right) \\

A \phi \\

\end{bmatrix}

At the extremes, the surface is a catenoid (\alpha = 0) or a helicoid (\alpha = \pi/2). Otherwise, \alpha represents a mixing angle. The resulting surface, with domain chosen to prevent self-intersection, is a catenary rotated around the \mathbf{X}_3 axis in a helical fashion.

File:Helically Rotated Catenary (Helicatenoid).jpg

File:The fundamental domain (C) and the 3D surfaces. The continuous surfaces are made of copies of the fundamental patch (R3).jpg

Lines of curvature

One can rewrite each element of second fundamental matrix as a function of f and g, for example

\mathbf{X_{uu}} \cdot \mathbf{\hat{n}} =

\frac{1}{|g|^2+1}

\begin{bmatrix}

\operatorname{Re} \left( ( 1- g^2 ) f' - 2gfg'\right) \\

\operatorname{Re} \left( ( 1+ g^2 ) f'i+ 2gfg'i \right) \\

\operatorname{Re} \left( 2gf' +2fg' \right) \\

\end{bmatrix}

\cdot

\begin{bmatrix}

\operatorname{Re} \left( 2g \right) \\

\operatorname{Re} \left( -2gi \right) \\

\operatorname{Re} \left( |g|^2-1 \right) \\

\end{bmatrix}

= -2\operatorname{Re} (fg')

And consequently the second fundamental form matrix can be simplified as

\begin{bmatrix}

-\operatorname{Re} f g' & \;\; \operatorname{Im} f g' \\

\operatorname{Im} f g' & \;\; \operatorname{Re} f g'

\end{bmatrix}

File:Lines of curvature make a quadrangulation of the domain.jpg

One of its eigenvectors is \overline{\sqrt{ f g'} } which represents the principal direction in the complex domain.{{cite journal |last1=Hua |first1=H. |last2=Jia |first2=T. |year=2018 |title=Wire cut of double-sided minimal surfaces |journal=The Visual Computer |volume=34 |issue=6–8 |pages=985–995 |doi=10.1007/s00371-018-1548-0 |s2cid=13681681 }} Therefore, the two principal directions in the uv space turn out to be

\phi = -\frac{1}{2} \operatorname{Arg}(f g') \pm k \pi /2

See also

References

{{reflist}}

{{DEFAULTSORT:Weierstrass-Enneper parameterization}}

Category:Differential geometry

Category:Surfaces

Category:Minimal surfaces