Wigner D-matrix#Relation to spherical harmonics and Legendre polynomials

{{Short description|Irreducible representation of the rotation group SO}}

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter {{mvar|D}} stands for Darstellung,{{Citation needed|date=February 2025}} which means "representation" in German.

Definition of the Wigner D-matrix

Let {{math|Jx, Jy, Jz}} be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as angular momentum. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor.

In all cases, the three operators satisfy the following commutation relations,

: [J_x,J_y] = i J_z,\quad [J_z,J_x] = i J_y,\quad [J_y,J_z] = i J_x,

where i is the purely imaginary number and the Planck constant {{mvar|ħ}} has been set equal to one. The Casimir operator

: J^2 = J_x^2 + J_y^2 + J_z^2

commutes with all generators of the Lie algebra. Hence, it may be diagonalized together with {{mvar|Jz}}.

This defines the spherical basis used here. That is, there is a complete set of kets (i.e. orthonormal basis of joint eigenvectors labelled by quantum numbers that define the eigenvalues) with

: J^2 |jm\rangle = j(j+1) |jm\rangle,\quad J_z |jm\rangle = m |jm\rangle,

where j = 0, 1/2, 1, 3/2, 2, ... for SU(2), and j = 0, 1, 2, ... for SO(3). In both cases, {{math|m {{=}} −j, −j + 1, ..., j}}.

A 3-dimensional rotation operator can be written as

: \mathcal{R}(\alpha,\beta,\gamma) = e^{-i\alpha J_z}e^{-i\beta J_y}e^{-i\gamma J_z},

where α, β, γ are Euler angles (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).

The Wigner D-matrix is a unitary square matrix of dimension 2j + 1 in this spherical basis with elements

: D^j_{m'm}(\alpha,\beta,\gamma) \equiv \langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle =e^{-im'\alpha } d^j_{m'm}(\beta)e^{-i m\gamma},

where

: d^j_{m'm}(\beta)= \langle jm' |e^{-i\beta J_y} | jm \rangle = D^j_{m'm}(0,\beta,0)

is an element of the orthogonal Wigner's (small) d-matrix.

That is, in this basis,

: D^j_{m'm}(\alpha,0,0) = e^{-im'\alpha } \delta_{m'm}

is diagonal, like the γ matrix factor, but unlike the above β factor.

Wigner (small) d-matrix

Wigner gave the following expression:{{cite book |first=E. P. |last=Wigner |title=Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren |publisher=Vieweg Verlag |location=Braunschweig |year=1951 |orig-year=1931 |oclc=602430512}} Translated into English by {{cite book |translator-first=J.J. |translator-last=Griffin |title=Group Theory and its Application to the Quantum Mechanics of Atomic Spectra |publisher=Elsevier |isbn=978-1-4832-7576-5 |year=2013 |url={{GBurl|UITNCgAAQBAJ|pg=PR9}} |orig-year=1959 }}

: d^j_{m'm}(\beta) =[(j+m')!(j-m')!(j+m)!(j-m)!]^{\frac{1}{2}} \sum_{s=s_{\mathrm{min}}}^{s_{\mathrm{max}}} \left[\frac{(-1)^{m'-m+s} \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s}\left(\sin\frac{\beta}{2}\right)^{m'-m+2s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!} \right].

The sum over s is over such values that the factorials are nonnegative, i.e. s_{\mathrm{min}}=\mathrm{max}(0,m-m'), s_{\mathrm{max}}=\mathrm{min}(j+m,j-m').

Note: The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor (-1)^{m'-m+s} in this formula is replaced by (-1)^s i^{m-m'}, causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.

The d-matrix elements are related to Jacobi polynomials P^{(a,b)}_k(\cos\beta) with nonnegative a and b.{{cite book |first1=L. C. |last1=Biedenharn |first2=J. D. |last2=Louck |title=Angular Momentum in Quantum Physics |publisher=Addison-Wesley |location=Reading |year=1981 |isbn=0-201-13507-8 }} Let

: k = \min(j+m, j-m, j+m', j-m').

If

: k = \begin{cases}

j+m: & a=m'-m;\quad \lambda=m'-m\\

j-m: & a=m-m';\quad \lambda= 0 \\

j+m': & a=m-m';\quad \lambda= 0 \\

j-m': & a=m'-m;\quad \lambda=m'-m \\

\end{cases}

Then, with b=2j-2k-a, the relation is

: d^j_{m'm}(\beta) = (-1)^{\lambda} \binom{2j-k}{k+a}^{\frac{1}{2}} \binom{k+b}{b}^{-\frac{1}{2}} \left(\sin\frac{\beta}{2}\right)^a \left(\cos\frac{\beta}{2}\right)^b P^{(a,b)}_k(\cos\beta),

where a,b \ge 0.

It is also useful to consider the relations a = |m'-m|, b = |m'+m|, \lambda = \frac{m-m'-|m-m'|}{2}, k = j - M, where M = \max(|m|,|m'|) and N = \min(|m|,|m'|), which lead to:

: d^j_{m'm}(\beta) =(-1)^{\frac{m-m'-|m-m'|}{2}}\left[ \frac{(j+M)!(j-M)!}{(j+N)!(j-N)!}\right]^{\frac{1}{2}} \left(\sin\frac{\beta}{2}\right)^

m-m'
\left(\cos\frac{\beta}{2}\right)^
m+m'
P_{j-M}^{(|m-m'|,|m+m'|)}(\cos \beta).

Properties of the Wigner D-matrix

The complex conjugate of the D-matrix satisfies a number of differential properties that can be formulated concisely by introducing the following operators with (x, y, z) = (1, 2, 3),

: \begin{align}

\hat{\mathcal{J}}_1 &= i \left( \cos \alpha \cot \beta \frac{\partial}{\partial \alpha} + \sin \alpha {\partial \over \partial \beta} - {\cos \alpha \over \sin \beta} {\partial \over \partial \gamma} \right) \\

\hat{\mathcal{J}}_2 &= i \left( \sin \alpha \cot \beta {\partial \over \partial \alpha} - \cos \alpha {\partial \over \partial \beta} - {\sin \alpha \over \sin \beta} {\partial \over \partial \gamma} \right) \\

\hat{\mathcal{J}}_3 &= - i {\partial \over \partial \alpha}

\end{align}

which have quantum mechanical meaning: they are space-fixed rigid rotor angular momentum operators.

Further,

: \begin{align}

\hat{\mathcal{P}}_1 &= i \left( {\cos \gamma \over \sin \beta}{\partial \over \partial \alpha } - \sin \gamma {\partial \over \partial \beta }- \cot \beta \cos \gamma {\partial \over \partial \gamma} \right)\\

\hat{\mathcal{P}}_2 &= i \left( - {\sin \gamma \over \sin \beta} {\partial \over \partial \alpha} - \cos \gamma

{\partial \over \partial \beta} + \cot \beta \sin \gamma {\partial \over \partial \gamma} \right) \\

\hat{\mathcal{P}}_3 &= - i {\partial\over \partial \gamma}, \\

\end{align}

which have quantum mechanical meaning: they are body-fixed rigid rotor angular momentum operators.

The operators satisfy the commutation relations

: \left[\mathcal{J}_1, \mathcal{J}_2\right] = i \mathcal{J}_3, \qquad \hbox{and}\qquad \left[\mathcal{P}_1, \mathcal{P}_2\right] = -i \mathcal{P}_3,

and the corresponding relations with the indices permuted cyclically. The \mathcal{P}_i satisfy anomalous commutation relations (have a minus sign on the right hand side).

The two sets mutually commute,

: \left[\mathcal{P}_i, \mathcal{J}_j\right] = 0,\quad i, j = 1, 2, 3,

and the total operators squared are equal,

: \mathcal{J}^2 \equiv \mathcal{J}_1^2+ \mathcal{J}_2^2 + \mathcal{J}_3^2 = \mathcal{P}^2 \equiv \mathcal{P}_1^2+ \mathcal{P}_2^2 + \mathcal{P}_3^2.

Their explicit form is,

: \mathcal{J}^2= \mathcal{P}^2 =-\frac{1}{\sin^2\beta} \left( \frac{\partial^2}{\partial \alpha^2} +\frac{\partial^2}{\partial \gamma^2} -2\cos\beta\frac{\partial^2}{\partial\alpha\partial \gamma} \right)-\frac{\partial^2}{\partial \beta^2} -\cot\beta\frac{\partial}{\partial \beta}.

The operators \mathcal{J}_i act on the first (row) index of the D-matrix,

: \begin{align}

\mathcal{J}_3 D^j_{m'm}(\alpha,\beta,\gamma)^* &=m' D^j_{m'm}(\alpha,\beta,\gamma)^* \\

(\mathcal{J}_1 \pm i \mathcal{J}_2) D^j_{m'm}(\alpha,\beta,\gamma)^* &= \sqrt{j(j+1)-m'(m'\pm 1)} D^j_{m'\pm 1, m}(\alpha,\beta,\gamma)^*

\end{align}

The operators \mathcal{P}_i act on the second (column) index of the D-matrix,

: \mathcal{P}_3 D^j_{m'm}(\alpha,\beta,\gamma)^* = m D^j_{m'm}(\alpha,\beta,\gamma)^* ,

and, because of the anomalous commutation relation the raising/lowering operators are defined with reversed signs,

: (\mathcal{P}_1 \mp i \mathcal{P}_2) D^j_{m'm}(\alpha,\beta,\gamma)^* = \sqrt{j(j+1)-m(m\pm 1)} D^j_{m', m\pm1}(\alpha,\beta,\gamma)^* .

Finally,

: \mathcal{J}^2 D^j_{m'm}(\alpha,\beta,\gamma)^* =\mathcal{P}^2 D^j_{m'm}(\alpha,\beta,\gamma)^* = j(j+1) D^j_{m'm}(\alpha,\beta,\gamma)^*.

In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span irreducible representations of the isomorphic Lie algebras generated by \{\mathcal{J}_i\} and \{-\mathcal{P}_i\}.

An important property of the Wigner D-matrix follows from the commutation of

\mathcal{R}(\alpha,\beta,\gamma) with the time reversal operator

{{mvar|T}},

: \langle jm' | \mathcal{R}(\alpha,\beta,\gamma)| jm \rangle = \langle jm' | T^{ \dagger} \mathcal{R}(\alpha,\beta,\gamma) T| jm \rangle =(-1)^{m'-m} \langle j,-m' | \mathcal{R}(\alpha,\beta,\gamma)| j,-m \rangle^*,

or

: D^j_{m'm}(\alpha,\beta,\gamma) = (-1)^{m'-m} D^j_{-m',-m}(\alpha,\beta,\gamma)^*.

Here, we used that T is anti-unitary (hence the complex conjugation after moving T^\dagger from ket to bra), T | jm \rangle = (-1)^{j-m} | j,-m \rangle and (-1)^{2j-m'-m} = (-1)^{m'-m}.

A further symmetry implies

: (-1)^{m'-m}D^{j}_{mm'}(\alpha,\beta,\gamma)=D^{j}_{m'm}(\gamma,\beta,\alpha)~.

Orthogonality relations

The Wigner D-matrix elements D^j_{mk}(\alpha,\beta,\gamma) form a set of orthogonal functions of the Euler angles \alpha, \beta, and \gamma:{{Cite journal|last=Van de Wiele|first=Jacques|url=https://hal.science/in2p3-00019832 |title=Rotations et moments angulaires en mécanique quantique|date=2001|journal=Annales de Physique|volume=26|pages=1-169}}

: \int_0^{2\pi} d\alpha \int_0^\pi d\beta \sin \beta \int_0^{2\pi} d\gamma \,\, D^{j'}_{m'k'}(\alpha,\beta,\gamma)^\ast D^j_{mk}(\alpha, \beta, \gamma) = \frac{8\pi^2}{2j+1} \delta_{m'm}\delta_{k'k}\delta_{j'j}.

This is a special case of the Schur orthogonality relations.

Crucially, by the Peter–Weyl theorem, they further form a complete set.

The fact that D^j_{mk}(\alpha,\beta,\gamma) are matrix elements of a unitary transformation from one spherical basis | lm \rangle to another \mathcal{R}(\alpha,\beta,\gamma) | lm \rangle is represented by the relations:{{Cite book|last=Rose|first=Morris Edgar|url={{GBurl|3lSiev-MnLQC|pg=PR7}} |title=Elementary theory of angular momentum|date=1995|publisher=Dover|isbn=0-486-68480-6|orig-year=1957|oclc=31374243}}

: \sum_k D^j_{m'k}(\alpha, \beta, \gamma)^* D^j_{mk}(\alpha, \beta, \gamma) = \delta_{m,m'},

: \sum_k D^j_{k m'}(\alpha, \beta, \gamma)^* D^j_{km}(\alpha, \beta, \gamma) = \delta_{m,m'}.

The group characters for SU(2) only depend on the rotation angle β, being class functions, so, then, independent of the axes of rotation,

: \chi^j (\beta)\equiv \sum_m D^j_{mm}(\beta)=\sum_m d^j_{mm}(\beta) = \frac{\sin\left (\frac{(2j+1)\beta}{2} \right )}{\sin \left (\frac{\beta}{2} \right )},

and consequently satisfy simpler orthogonality relations, through the Haar measure of the group,{{cite tech report |last=Schwinger |first=J. |url=https://www.osti.gov/biblio/4389568-angular-momentum |title=On Angular Momentum |institution=Harvard University, Nuclear Development Associates |id=NYO-3071, TRN: US200506%%295 |date=January 26, 1952 |doi=10.2172/4389568}}

: \frac{1}{\pi} \int _0^{2\pi} d\beta \sin^2 \left (\frac{\beta}{2} \right ) \chi^j (\beta) \chi^{j'}(\beta)= \delta_{j'j}.

The completeness relation is (cf. Eq. (3.95) in ref. )

: \sum_j \chi^j (\beta) \chi^j (\beta')= \delta (\beta -\beta'),

whence, for \beta' =0,

: \sum_j \chi^j (\beta) (2j+1)= \delta (\beta ).

Kronecker product of Wigner D-matrices, Clebsch–Gordan series

The set of Kronecker product matrices

:

\mathbf{D}^j(\alpha,\beta,\gamma)\otimes \mathbf{D}^{j'}(\alpha,\beta,\gamma)

forms a reducible matrix representation of the groups SO(3) and SU(2). Reduction into irreducible components is by the following equation:

:

D^j_{m k}(\alpha,\beta,\gamma) D^{j'}_{m' k'}(\alpha,\beta,\gamma) =

\sum_{J=|j-j'|}^{j+j'} \langle j m j' m' | J \left(m + m'\right) \rangle

\langle j k j' k' | J \left(k + k'\right) \rangle

D^J_{\left(m + m'\right) \left(k + k'\right)}(\alpha,\beta,\gamma)

The symbol \langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle is a Clebsch–Gordan coefficient.

Relation to spherical harmonics and Legendre polynomials

For integer values of l, the D-matrix elements with second index equal to zero are proportional

to spherical harmonics and associated Legendre polynomials, normalized to unity and with Condon and Shortley phase convention:

:

D^{\ell}_{m 0}(\alpha,\beta,\gamma) = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^{m*} (\beta, \alpha ) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}} \, P_\ell^m ( \cos{\beta} ) \, e^{-i m \alpha }.

This implies the following relationship for the d-matrix:

:

d^{\ell}_{m 0}(\beta) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}} \, P_\ell^m ( \cos{\beta} ).

A rotation of spherical harmonics \langle \theta, \phi| \ell m'\rangle then is effectively a composition of two rotations,

:

\sum^\ell_{m'=-\ell} Y_{\ell}^ {m'} (\theta, \phi ) ~ D^{\ell}_{m' ~m }(\alpha,\beta,\gamma).

When both indices are set to zero, the Wigner D-matrix elements are given by ordinary Legendre polynomials:

:

D^{\ell}_{0,0}(\alpha,\beta,\gamma) = d^{\ell}_{0,0}(\beta) = P_{\ell}(\cos\beta).

In the present convention of Euler angles, \alpha is

a longitudinal angle and \beta is a colatitudinal angle (spherical polar angles

in the physical definition of such angles). This is one of the reasons that the z-y-z

convention is used frequently in molecular physics.

From the time-reversal property of the Wigner D-matrix follows immediately

:

\left( Y_{\ell}^m \right) ^* = (-1)^m Y_{\ell}^{-m}.

There exists a more general relationship to the spin-weighted spherical harmonics:

:

D^{\ell}_{m s}(\alpha,\beta,-\gamma) =(-1)^s \sqrt\frac{4\pi}{2{\ell}+1} {}_sY_{\ell}^m(\beta,\alpha) e^{is\gamma}.

{{cite thesis |first=M. |last=Shiraishi |chapter=Appendix A: Spin-Weighted Spherical Harmonic Function |chapter-url=https://link.springer.com/content/pdf/bbm:978-4-431-54180-6/1.pdf |title=Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum |date=2013 |isbn=978-4-431-54180-6 |publisher=Nagoya University |type=PhD |url= |pages=153–4}}

Connection with transition probability under rotations

The absolute square of an element of the D-matrix,

:

F_{mm'}(\beta) = | D^j_{mm'}(\alpha,\beta,\gamma) |^2,

gives the probability that a system with spin j prepared in a state with spin projection m along

some direction will be measured to have a spin projection m' along a second direction at an angle \beta to the first direction. The set of quantities F_{mm'} itself forms a real symmetric matrix, that

depends only on the Euler angle \beta, as indicated.

Remarkably, the eigenvalue problem for the F matrix can be solved completely:

{{cite journal

| first = A. |last=Meckler

| title = Majorana formula

| journal = Physical Review

| year = 1958

| volume = 111

| issue=6

| page = 1447 |doi=10.1103/PhysRev.111.1447

}}

{{cite journal

| first1 = N.D. |last1=Mermin |first2 = G.M. |last2=Schwarz

| title = Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment

| journal = Foundations of Physics

| year = 1982

| volume = 12 |issue=2

| page = 101 |doi=10.1007/BF00736844

|s2cid=121648820

}}

:

\sum_{m' = -j}^j F_{mm'}(\beta) f^j_{\ell}(m') = P_{\ell}(\cos\beta) f^j_{\ell}(m) \qquad (\ell = 0, 1, \ldots, 2j).

Here, the eigenvector, f^j_{\ell}(m), is a scaled and shifted discrete Chebyshev polynomial, and the corresponding eigenvalue, P_{\ell}(\cos\beta), is the Legendre polynomial.

Relation to Bessel functions

In the limit when \ell \gg m, m^\prime, one obtains

: D^\ell_{mm'}(\alpha,\beta,\gamma) \approx e^{-im\alpha-im'\gamma}J_{m-m'}(\ell\beta)

where J_{m-m'}(\ell\beta) is the Bessel function and \ell\beta is finite.

List of d-matrix elements

Using sign convention of Wigner, et al. the d-matrix elements d^j_{m'm}(\theta)

for j = 1/2, 1, 3/2, and 2 are given below.

For j = 1/2

: \begin{align}

d_{\frac{1}{2},\frac{1}{2}}^{\frac{1}{2}} &= \cos \frac{\theta}{2} \\[6pt]

d_{\frac{1}{2},-\frac{1}{2}}^{\frac{1}{2}} &= -\sin \frac{\theta}{2}

\end{align}

For j = 1

: \begin{align}

d_{1,1}^{1} &= \frac{1}{2} (1+\cos \theta) \\[6pt]

d_{1,0}^{1} &= -\frac{1}{\sqrt{2}} \sin \theta \\[6pt]

d_{1,-1}^{1} &= \frac{1}{2} (1-\cos \theta) \\[6pt]

d_{0,0}^{1} &= \cos \theta

\end{align}

For j = 3/2

: \begin{align}

d_{\frac{3}{2}, \frac{3}{2}}^{\frac{3}{2}} &= \frac{1}{2} (1+\cos \theta) \cos \frac{\theta}{2} \\[6pt]

d_{\frac{3}{2}, \frac{1}{2}}^{\frac{3}{2}} &= -\frac{\sqrt{3}}{2} (1+\cos \theta) \sin \frac{\theta}{2} \\[6pt]

d_{\frac{3}{2},-\frac{1}{2}}^{\frac{3}{2}} &= \frac{\sqrt{3}}{2} (1-\cos \theta) \cos \frac{\theta}{2} \\[6pt]

d_{\frac{3}{2},-\frac{3}{2}}^{\frac{3}{2}} &= -\frac{1}{2} (1-\cos \theta) \sin \frac{\theta}{2} \\[6pt]

d_{\frac{1}{2}, \frac{1}{2}}^{\frac{3}{2}} &= \frac{1}{2} (3\cos \theta - 1) \cos \frac{\theta}{2} \\[6pt]

d_{\frac{1}{2},-\frac{1}{2}}^{\frac{3}{2}} &= -\frac{1}{2} (3\cos \theta + 1) \sin \frac{\theta}{2}

\end{align}

For j = 2{{cite journal | doi = 10.1002/cmr.a.10061 | author = Edén, M.

| title = Computer simulations in solid-state NMR. I. Spin dynamics theory| journal = Concepts in Magnetic Resonance Part A| volume=17A| issue=1| pages=117–154| year=2003}}

: \begin{align}

d_{2,2}^{2} &= \frac{1}{4}\left(1 +\cos \theta\right)^2 \\[6pt]

d_{2,1}^{2} &= -\frac{1}{2}\sin \theta \left(1 + \cos \theta\right) \\[6pt]

d_{2,0}^{2} &= \sqrt{\frac{3}{8}}\sin^2 \theta \\[6pt]

d_{2,-1}^{2} &= -\frac{1}{2}\sin \theta \left(1 - \cos \theta\right) \\[6pt]

d_{2,-2}^{2} &= \frac{1}{4}\left(1 -\cos \theta\right)^2 \\[6pt]

d_{1,1}^{2} &= \frac{1}{2}\left(2\cos^2\theta + \cos \theta-1 \right) \\[6pt]

d_{1,0}^{2} &= -\sqrt{\frac{3}{8}} \sin 2 \theta \\[6pt]

d_{1,-1}^{2} &= \frac{1}{2}\left(- 2\cos^2\theta + \cos \theta +1 \right) \\[6pt]

d_{0,0}^{2} &= \frac{1}{2} \left(3 \cos^2 \theta - 1\right)

\end{align}

Wigner d-matrix elements with swapped lower indices are found with the relation:

: d_{m', m}^j = (-1)^{m-m'}d_{m, m'}^j = d_{-m,-m'}^j.

Symmetries and special cases

: \begin{align}

d_{m',m}^{j}(\pi) &= (-1)^{j-m} \delta_{m',-m} \\[6pt]

d_{m',m}^{j}(\pi-\beta) &= (-1)^{j+m'} d_{m',-m}^{j}(\beta)\\[6pt]

d_{m',m}^{j}(\pi+\beta) &= (-1)^{j-m} d_{m',-m}^{j}(\beta)\\[6pt]

d_{m',m}^{j}(2\pi+\beta) &= (-1)^{2j} d_{m',m}^{j}(\beta)\\[6pt]

d_{m',m}^{j}(-\beta) &= d_{m,m'}^{j}(\beta) = (-1)^{m'-m} d_{m',m}^{j}(\beta)

\end{align}

See also

References

{{reflist}}