classical capacity

{{short description|Term in quantum information theory}}

In quantum information theory, the classical capacity of a quantum channel is the maximum rate at which classical data can be sent over it error-free in the limit of many uses of the channel. Holevo, Schumacher, and Westmoreland proved the following least upper bound on the classical capacity of any quantum channel \mathcal{N}:

:

\chi(\mathcal{N}) = \max_{\rho^{XA}} I(X;B)_{\mathcal{N}(\rho)}

where \rho^{XA} is a classical-quantum state of the following form:

:

\rho^{XA} = \sum_x p_X(x) \vert x \rangle \langle x \vert^X \otimes \rho_x^A ,

p_X(x) is a probability distribution, and each \rho_x^A is a density operator that can be input to the channel \mathcal{N}.

Achievability using sequential decoding

We briefly review the HSW coding theorem (the

statement of the achievability of the Holevo information rate I(X;B) for

communicating classical data over a quantum channel). We first review the

minimal amount of quantum mechanics needed for the theorem. We then cover

quantum typicality, and finally we prove the theorem using a recent sequential

decoding technique.

Review of quantum mechanics

In order to prove the HSW coding theorem, we really just need a few basic

things from quantum mechanics. First, a quantum state is a unit trace,

positive operator known as a density operator. Usually, we denote it

by \rho, \sigma, \omega, etc. The simplest model for a quantum channel

is known as a classical-quantum channel:

x\mapsto \rho_{x}.

The meaning of the above notation is that inputting the classical letter x

at the transmitting end leads to a quantum state \rho_{x} at the receiving

end. It is the task of the receiver to perform a measurement to determine the

input of the sender. If it is true that the states \rho_{x} are perfectly

distinguishable from one another (i.e., if they have orthogonal supports such

that \mathrm{Tr}\,\left\{ \rho_{x}\rho_{x^{\prime}}\right\} =0 for x\neq x^{\prime}

), then the channel is a noiseless channel. We are interested in situations

for which this is not the case. If it is true that the states \rho_{x} all

commute with one another, then this is effectively identical to the situation

for a classical channel, so we are also not interested in these situations.

So, the situation in which we are interested is that in which the states

\rho_{x} have overlapping support and are non-commutative.

The most general way to describe a quantum measurement is with a

positive operator-valued measure (POVM). We usually denote the elements of a POVM as

\left\{ \Lambda_{m}\right\} _{m}. These operators should satisfy

positivity and completeness in order to form a valid POVM:

:

\Lambda_{m} \geq0\ \ \ \ \forall m

:\sum_{m}\Lambda_{m} =I.

The probabilistic interpretation of quantum mechanics states that if someone

measures a quantum state \rho using a measurement device corresponding to

the POVM \left\{ \Lambda_{m}\right\} , then the probability p\left(

m\right) for obtaining outcome m is equal to

:

p\left( m\right) =\text{Tr}\left\{ \Lambda_{m}\rho\right\} ,

and the post-measurement state is

:

\rho_{m}^{\prime}=\frac{1}{p\left( m\right) }\sqrt{\Lambda_{m}}\rho

\sqrt{\Lambda_{m}},

if the person measuring obtains outcome m. These rules are sufficient for us

to consider classical communication schemes over cq channels.

Quantum typicality

The reader can find a good review of this topic in the article about the typical subspace.

Gentle operator lemma

The following lemma is important for our proofs. It

demonstrates that a measurement that succeeds with high probability on average

does not disturb the state too much on average:

Lemma: [Winter] Given an

ensemble \left\{ p_{X}\left( x\right) ,\rho_{x}\right\} with expected

density operator \rho\equiv\sum_{x}p_{X}\left( x\right) \rho_{x}, suppose

that an operator \Lambda such that I\geq\Lambda\geq0 succeeds with high

probability on the state \rho:

\text{Tr}\left\{ \Lambda\rho\right\} \geq1-\epsilon.

Then the subnormalized state \sqrt{\Lambda}\rho_{x}\sqrt{\Lambda} is close

in expected trace distance to the original state \rho_{x}:

\mathbb{E}_{X}\left\{ \left\Vert \sqrt{\Lambda}\rho_{X}\sqrt{\Lambda}

-\rho_{X}\right\Vert _{1}\right\} \leq2\sqrt{\epsilon}.

(Note that \left\Vert A\right\Vert _{1} is the nuclear norm of the operator

A so that \left\Vert A\right\Vert _{1}\equivTr\left\{ \sqrt{A^{\dagger}

A}\right\} .)

The following inequality is useful for us as well. It holds for any operators

\rho, \sigma, \Lambda such that 0\leq\rho,\sigma,\Lambda\leq I:

{{NumBlk|:|

\text{Tr}\left\{ \Lambda\rho\right\} \leq\text{Tr}\left\{ \Lambda

\sigma\right\} +\left\Vert \rho-\sigma\right\Vert _{1}.

|{{EquationRef|1}}}}

The quantum information-theoretic interpretation of the above inequality is

that the probability of obtaining outcome \Lambda from a quantum measurement

acting on the state \rho is upper bounded by the probability of obtaining

outcome \Lambda on the state \sigma summed with the distinguishability of

the two states \rho and \sigma.

Non-commutative union bound

Lemma: [Sen's bound] The following bound

holds for a subnormalized state \sigma such that 0\leq\sigma and

Tr\left\{ \sigma\right\} \leq1 with \Pi_{1}, ... , \Pi_{N} being

projectors:

\text{Tr}\left\{ \sigma\right\} -\text{Tr}\left\{ \Pi_{N}\cdots\Pi

_{1}\ \sigma\ \Pi_{1}\cdots\Pi_{N}\right\} \leq2\sqrt{\sum_{i=1}^{N}

\text{Tr}\left\{ \left( I-\Pi_{i}\right) \sigma\right\} },

We can think of Sen's bound as a "non-commutative union

bound" because it is analogous to the following union bound

from probability theory:

\Pr\left\{ \left( A_{1}\cap\cdots\cap A_{N}\right) ^{c}\right\}

=\Pr\left\{ A_{1}^{c}\cup\cdots\cup A_{N}^{c}\right\} \leq\sum_{i=1}^{N}

\Pr\left\{ A_{i}^{c}\right\} ,

where A_{1}, \ldots, A_{N} are events. The analogous bound for projector

logic would be

:

\text{Tr}\left\{ \left( I-\Pi_{1}\cdots\Pi_{N}\cdots\Pi_{1}\right)

\rho\right\} \leq\sum_{i=1}^{N}\text{Tr}\left\{ \left( I-\Pi_{i}\right)

\rho\right\} ,

if we think of \Pi_{1}\cdots\Pi_{N} as a projector onto the intersection of

subspaces. Though, the above bound only holds if the projectors \Pi_{1},

..., \Pi_{N} are commuting (choosing \Pi_{1}=\left\vert +\right\rangle

\left\langle +\right\vert , \Pi_{2}=\left\vert 0\right\rangle \left\langle

0\right\vert , and \rho=\left\vert 0\right\rangle \left\langle 0\right\vert

gives a counterexample). If the projectors are non-commuting, then Sen's

bound is the next best thing and suffices for our purposes here.

HSW theorem with the non-commutative union bound

We now prove the HSW theorem with Sen's non-commutative union bound. We

divide up the proof into a few parts: codebook generation, POVM construction,

and error analysis.

Codebook Generation. We first describe how Alice and Bob agree on a

random choice of code. They have the channel x\rightarrow\rho_{x} and a

distribution p_{X}\left( x\right) . They choose M classical sequences

x^{n} according to the IID\ distribution p_{X^{n}}\left( x^{n}\right) .

After selecting them, they label them with indices as \left\{ x^{n}\left(

m\right) \right\} _{m\in\left[ M\right] }. This leads to the following

quantum codewords:

\rho_{x^{n}\left( m\right) }=\rho_{x_{1}\left( m\right) }\otimes

\cdots\otimes\rho_{x_{n}\left( m\right) }.

The quantum codebook is then \left\{ \rho_{x^{n}\left( m\right) }\right\}

. The average state of the codebook is then

{{NumBlk|:|

\mathbb{E}_{X^{n}}\left\{ \rho_{X^{n}}\right\} =\sum_{x^{n}}p_{X^{n}}\left(

x^{n}\right) \rho_{x^{n}}=\rho^{\otimes n},

|{{EquationRef|2}}}}

where \rho=\sum_{x}p_{X}\left( x\right) \rho_{x}.

POVM Construction . Sens' bound from the above lemma

suggests a method for Bob to decode a state that Alice transmits. Bob should

first ask "Is the received state in the average typical

subspace?" He can do this operationally by performing a

typical subspace measurement corresponding to \left\{ \Pi_{\rho,\delta}

^{n},I-\Pi_{\rho,\delta}^{n}\right\} . Next, he asks in sequential order,

"Is the received codeword in the m^{\text{th}}

conditionally typical subspace?" This is in some sense

equivalent to the question, "Is the received codeword the

m^{\text{th}} transmitted codeword?" He can ask these

questions operationally by performing the measurements corresponding to the

conditionally typical projectors \left\{ \Pi_{\rho_{x^{n}\left( m\right)

},\delta},I-\Pi_{\rho_{x^{n}\left( m\right) },\delta}\right\} .

Why should this sequential decoding scheme work well? The reason is that the

transmitted codeword lies in the typical subspace on average:

:

\mathbb{E}_{X^{n}}\left\{ \text{Tr}\left\{ \Pi_{\rho,\delta}\ \rho_{X^{n}

}\right\} \right\} =\text{Tr}\left\{ \Pi_{\rho,\delta}\ \mathbb{E}

_{X^{n}}\left\{ \rho_{X^{n}}\right\} \right\}

: =\text{Tr}\left\{ \Pi_{\rho,\delta}\ \rho^{\otimes n}\right\}

: \geq1-\epsilon,

where the inequality follows from (\ref{eq:1st-typ-prop}). Also, the

projectors \Pi_{\rho_{x^{n}\left( m\right) },\delta}

are "good detectors" for the states \rho_{x^{n}\left( m\right)

} (on average) because the following condition holds from conditional quantum

typicality:

\mathbb{E}_{X^{n}}\left\{ \text{Tr}\left\{ \Pi_{\rho_{X^{n}},\delta}

\ \rho_{X^{n}}\right\} \right\} \geq1-\epsilon.

Error Analysis. The probability of detecting the m^{\text{th}}

codeword correctly under our sequential decoding scheme is equal to

\text{Tr}\left\{ \Pi_{\rho_{X^{n}\left( m\right) },\delta}\hat{\Pi}

_{\rho_{X^{n}\left( m-1\right) },\delta}\cdots\hat{\Pi}_{\rho_{X^{n}\left(

1\right) },\delta}\ \Pi_{\rho,\delta}^{n}\ \rho_{x^{n}\left( m\right)

}\ \Pi_{\rho,\delta}^{n}\ \hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta

}\cdots\hat{\Pi}_{\rho_{X^{n}\left( m-1\right) },\delta}\Pi_{\rho

_{X^{n}\left( m\right) },\delta}\right\} ,

where we make the abbreviation \hat{\Pi}\equiv I-\Pi. (Observe that we

project into the average typical subspace just once.) Thus, the probability of

an incorrect detection for the m^{\text{th}} codeword is given by

1-\text{Tr}\left\{ \Pi_{\rho_{X^{n}\left( m\right) },\delta}\hat{\Pi}

_{\rho_{X^{n}\left( m-1\right) },\delta}\cdots\hat{\Pi}_{\rho_{X^{n}\left(

1\right) },\delta}\ \Pi_{\rho,\delta}^{n}\ \rho_{x^{n}\left( m\right)

}\ \Pi_{\rho,\delta}^{n}\ \hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta

}\cdots\hat{\Pi}_{\rho_{X^{n}\left( m-1\right) },\delta}\Pi_{\rho

_{X^{n}\left( m\right) },\delta}\right\} ,

and the average error probability of this scheme is equal to

1-\frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi_{\rho_{X^{n}\left( m\right)

},\delta}\hat{\Pi}_{\rho_{X^{n}\left( m-1\right) },\delta}\cdots\hat{\Pi

}_{\rho_{X^{n}\left( 1\right) },\delta}\ \Pi_{\rho,\delta}^{n}\ \rho

_{x^{n}\left( m\right) }\ \Pi_{\rho,\delta}^{n}\ \hat{\Pi}_{\rho

_{X^{n}\left( 1\right) },\delta}\cdots\hat{\Pi}_{\rho_{X^{n}\left(

m-1\right) },\delta}\Pi_{\rho_{X^{n}\left( m\right) },\delta}\right\} .

Instead of analyzing the average error probability, we analyze the expectation

of the average error probability, where the expectation is with respect to the

random choice of code:

{{NumBlk|:|

1-\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho_{X^{n}\left( m\right) },\delta}\hat{\Pi}_{\rho_{X^{n}\left(

m-1\right) },\delta}\cdots\hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta

}\ \Pi_{\rho,\delta}^{n}\ \rho_{X^{n}\left( m\right) }\ \Pi_{\rho,\delta

}^{n}\ \hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta}\cdots\hat{\Pi}

_{\rho_{X^{n}\left( m-1\right) },\delta}\Pi_{\rho_{X^{n}\left( m\right)

},\delta}\right\} \right\} .

|{{EquationRef|3}}}}

Our first step is to apply Sen's bound to the above quantity. But before doing

so, we should rewrite the above expression just slightly, by observing that

:

1 =\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{

\rho_{X^{n}\left( m\right) }\right\} \right\}

: =\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\right\} +\text{Tr}\left\{

\hat{\Pi}_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\right\} \right\}

: =\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\}

\right\} +\frac{1}{M}\sum_{m}\text{Tr}\left\{ \hat{\Pi}_{\rho,\delta}

^{n}\mathbb{E}_{X^{n}}\left\{ \rho_{X^{n}\left( m\right) }\right\}

\right\}

: =\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\}

\right\} +\text{Tr}\left\{ \hat{\Pi}_{\rho,\delta}^{n}\rho^{\otimes

n}\right\}

: \leq\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{

\Pi_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}

^{n}\right\} \right\} +\epsilon

Substituting into ({{EquationNote|3}}) (and forgetting about the small

\epsilon term for now) gives an upper bound of

:

\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\}

\right\}

:

-\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho_{X^{n}\left( m\right) },\delta}\hat{\Pi}_{\rho_{X^{n}\left(

m-1\right) },\delta}\cdots\hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta

}\ \Pi_{\rho,\delta}^{n}\ \rho_{X^{n}\left( m\right) }\ \Pi_{\rho,\delta

}^{n}\ \hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta}\cdots\hat{\Pi}

_{\rho_{X^{n}\left( m-1\right) },\delta}\Pi_{\rho_{X^{n}\left( m\right)

},\delta}\right\} \right\} .

We then apply Sen's bound to this expression with \sigma=\Pi_{\rho,\delta

}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n} and the sequential

projectors as \Pi_{\rho_{X^{n}\left( m\right) },\delta}, \hat{\Pi}

_{\rho_{X^{n}\left( m-1\right) },\delta}, ..., \hat{\Pi}_{\rho

_{X^{n}\left( 1\right) },\delta}. This gives the upper bound

\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}2\left[ \text{Tr}\left\{

\left( I-\Pi_{\rho_{X^{n}\left( m\right) },\delta}\right) \Pi_{\rho

,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\}

+\sum_{i=1}^{m-1}\text{Tr}\left\{ \Pi_{\rho_{X^{n}\left( i\right) },\delta

}\Pi_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}

^{n}\right\} \right] ^{1/2}\right\} .

Due to concavity of the square root, we can bound this expression from above

by

:

2\left[ \mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{

\left( I-\Pi_{\rho_{X^{n}\left( m\right) },\delta}\right) \Pi_{\rho

,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\}

+\sum_{i=1}^{m-1}\text{Tr}\left\{ \Pi_{\rho_{X^{n}\left( i\right) },\delta

}\Pi_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}

^{n}\right\} \right\} \right] ^{1/2}

: \leq2\left[ \mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{

\left( I-\Pi_{\rho_{X^{n}\left( m\right) },\delta}\right) \Pi_{\rho

,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\}

+\sum_{i\neq m}\text{Tr}\left\{ \Pi_{\rho_{X^{n}\left( i\right) },\delta

}\Pi_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}

^{n}\right\} \right\} \right] ^{1/2},

where the second bound follows by summing over all of the codewords not equal

to the m^{\text{th}} codeword (this sum can only be larger).

We now focus exclusively on showing that the term inside the square root can

be made small. Consider the first term:

:

\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \left(

I-\Pi_{\rho_{X^{n}\left( m\right) },\delta}\right) \Pi_{\rho,\delta}

^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}^{n}\right\} \right\}

: \leq\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \left(

I-\Pi_{\rho_{X^{n}\left( m\right) },\delta}\right) \rho_{X^{n}\left(

m\right) }\right\} +\left\Vert \rho_{X^{n}\left( m\right) }-\Pi

_{\rho,\delta}^{n}\rho_{X^{n}\left( m\right) }\Pi_{\rho,\delta}

^{n}\right\Vert _{1}\right\}

: \leq\epsilon+2\sqrt{\epsilon}.

where the first inequality follows from ({{EquationNote|1}}) and the

second inequality follows from the gentle operator lemma and the

properties of unconditional and conditional typicality. Consider now the

second term and the following chain of inequalities:

:

\sum_{i\neq m}\mathbb{E}_{X^{n}}\left\{ \text{Tr}\left\{ \Pi_{\rho

_{X^{n}\left( i\right) },\delta}\ \Pi_{\rho,\delta}^{n}\ \rho_{X^{n}\left(

m\right) }\ \Pi_{\rho,\delta}^{n}\right\} \right\}

: =\sum_{i\neq m}\text{Tr}\left\{ \mathbb{E}_{X^{n}}\left\{ \Pi

_{\rho_{X^{n}\left( i\right) },\delta}\right\} \ \Pi_{\rho,\delta}

^{n}\ \mathbb{E}_{X^{n}}\left\{ \rho_{X^{n}\left( m\right) }\right\}

\ \Pi_{\rho,\delta}^{n}\right\}

: =\sum_{i\neq m}\text{Tr}\left\{ \mathbb{E}_{X^{n}}\left\{ \Pi

_{\rho_{X^{n}\left( i\right) },\delta}\right\} \ \Pi_{\rho,\delta}

^{n}\ \rho^{\otimes n}\ \Pi_{\rho,\delta}^{n}\right\}

: \leq\sum_{i\neq m}2^{-n\left[ H\left( B\right) -\delta\right]

}\ \text{Tr}\left\{ \mathbb{E}_{X^{n}}\left\{ \Pi_{\rho_{X^{n}\left(

i\right) },\delta}\right\} \ \Pi_{\rho,\delta}^{n}\right\}

The first equality follows because the codewords X^{n}\left( m\right) and

X^{n}\left( i\right) are independent since they are different. The second

equality follows from ({{EquationNote|2}}). The first inequality follows from

(\ref{eq:3rd-typ-prop}). Continuing, we have

:

\leq\sum_{i\neq m}2^{-n\left[ H\left( B\right) -\delta\right]

}\ \mathbb{E}_{X^{n}}\left\{ \text{Tr}\left\{ \Pi_{\rho_{X^{n}\left(

i\right) },\delta}\right\} \right\}

: \leq\sum_{i\neq m}2^{-n\left[ H\left( B\right) -\delta\right]

}\ 2^{n\left[ H\left( B|X\right) +\delta\right] }

: =\sum_{i\neq m}2^{-n\left[ I\left( X;B\right) -2\delta\right] }

: \leq M\ 2^{-n\left[ I\left( X;B\right) -2\delta\right] }.

The first inequality follows from \Pi_{\rho,\delta}^{n}\leq I and exchanging

the trace with the expectation. The second inequality follows from

(\ref{eq:2nd-cond-typ}). The next two are straightforward.

Putting everything together, we get our final bound on the expectation of the

average error probability:

:

1-\mathbb{E}_{X^{n}}\left\{ \frac{1}{M}\sum_{m}\text{Tr}\left\{ \Pi

_{\rho_{X^{n}\left( m\right) },\delta}\hat{\Pi}_{\rho_{X^{n}\left(

m-1\right) },\delta}\cdots\hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta

}\ \Pi_{\rho,\delta}^{n}\ \rho_{X^{n}\left( m\right) }\ \Pi_{\rho,\delta

}^{n}\ \hat{\Pi}_{\rho_{X^{n}\left( 1\right) },\delta}\cdots\hat{\Pi}

_{\rho_{X^{n}\left( m-1\right) },\delta}\Pi_{\rho_{X^{n}\left( m\right)

},\delta}\right\} \right\}

:\leq\epsilon+2\left[ \left( \epsilon+2\sqrt{\epsilon}\right)

+M\ 2^{-n\left[ I\left( X;B\right) -2\delta\right] }\right] ^{1/2}.

Thus, as long as we choose M=2^{n\left[ I\left( X;B\right) -3\delta

\right] }, there exists a code with vanishing error probability.

See also

References

  • {{citation|first=Alexander S.|last=Holevo|authorlink=Alexander Holevo|arxiv=quant-ph/9611023|title=The Capacity of Quantum Channel with General Signal States|year=1998|doi=10.1109/18.651037|journal=IEEE Transactions on Information Theory|volume=44|issue=1|pages=269–273}}.
  • {{citation|first1=Benjamin|last1=Schumacher|first2=Michael|last2=Westmoreland|doi=10.1103/PhysRevA.56.131|title=Sending classical information via noisy quantum channels|journal=Phys. Rev. A|volume=56|pages=131–138|year=1997|issue=1|bibcode = 1997PhRvA..56..131S }}.
  • {{citation|first=Mark M.|last=Wilde|arxiv=1106.1445|title=Quantum Information Theory|year=2017|publisher=Cambridge University Press|bibcode = 2011arXiv1106.1445W |doi=10.1017/9781316809976.001|s2cid=2515538 }}
  • {{citation|first=Pranab|last=Sen|arxiv=1109.0802|contribution=Achieving the Han-Kobayashi inner bound for the quantum interference channel by sequential decoding|year=2012|title=IEEE International Symposium on Information Theory Proceedings (ISIT 2012)|pages=736–740|doi=10.1109/ISIT.2012.6284656|s2cid=15119225}}.
  • {{citation|first1=Saikat|last1=Guha|first2=Si-Hui|last2=Tan|first3=Mark M.|last3=Wilde|arxiv=1202.0518|contribution=Explicit capacity-achieving receivers for optical communication and quantum reading|year=2012|title=IEEE International Symposium on Information Theory Proceedings (ISIT 2012)|pages=551–555|doi=10.1109/ISIT.2012.6284251|isbn=978-1-4673-2579-0 |s2cid=8786400}}.

{{Quantum computing}}

Category:Quantum information theory

Category:Limits of computation