complex Wishart distribution

{{Probability distribution

| name = Complex Wishart

| type =density

| pdf_image =

| cdf_image =

| notation ={{math|A ~ CWp(\Gamma, n)}}

| parameters ={{math|n > p − 1}} degrees of freedom (real)
{{math|\Gamma > 0}} ({{math|p × p}} Hermitian pos. def)

| support ={{math|A (p × p)}} Hermitian positive definite matrix

| pdf =\frac{

\det\left(\mathbf{A}\right)^{(n-p)} e^{-\operatorname{tr}(\mathbf{\Gamma}^{-1}\mathbf{A})}

}{

\det\left(\mathbf{\Gamma}\right)^{n}\cdot \mathcal{C} \widetilde{\Gamma}_p(n)

}

| cdf =

| mean =\operatorname{E}[A]=n\Gamma|

| median =

| mode =(n-p) \mathbf{\Gamma} for {{math|np + 1}}

| variance =

| skewness =

| kurtosis =

| entropy =

| mgf =

| char = \det\left(I_p-i\mathbf{\Gamma}\mathbf{\Theta}\right)^{-n}

}}

In statistics, the complex Wishart distribution is a complex version of the Wishart distribution. It is the distribution of n times the sample Hermitian covariance matrix of n zero-mean independent Gaussian random variables. It has support for p\times p Hermitian positive definite matrices.{{cite journal |author= N. R. Goodman |year= 1963 |title= The distribution of the determinant of a complex Wishart distributed matrix | journal =The Annals of Mathematical Statistics |volume= 34 |number= 1 |pages= 178–180|doi= 10.1214/aoms/1177704251 |doi-access= free }}

The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let

: S_{p \times p} = \sum_{i=1}^n G_iG_i^H

where each G_i is an independent column p-vector of random complex Gaussian zero-mean samples and (.)^H is an Hermitian (complex conjugate) transpose. If the covariance of G is \mathbb{E}[GG^H] = M then

: S \sim n\mathcal{CW}(M,n,p)

where \mathcal{CW}(M,n,p) is the complex central Wishart distribution with n degrees of freedom and mean value, or scale matrix, M.

: f_S(\mathbf{S}) = \frac{

\left |\mathbf{S} \right|^{n-p} e^{-\operatorname{tr}(\mathbf M^{-1}\mathbf{S}) }

}

{

\left|\mathbf{M}\right|^n\cdot \mathcal{C} \widetilde{\Gamma}_p(n)

}, \;\;\; n\ge p, \;\;\; \left|\mathbf{M}\right| > 0

where

: \mathcal{C} \widetilde{\Gamma}_p^{} (n) = \pi^{p(p-1)/2} \prod_{j=1}^p \Gamma (n-j+1)

is the complex multivariate Gamma function.{{Cite journal|last=Goodman|first=N R|date=1963|title=Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)|journal=Ann. Math. Statist.|volume=34|pages=152–177|doi=10.1214/aoms/1177704250|doi-access=free}}

Using the trace rotation rule \operatorname{tr}(ABC) = \operatorname{tr}(CAB) we also get

: f_S(\mathbf{S}) = \frac{

\left |\mathbf{S} \right|^{n-p}

}

{ \left|\mathbf{M}\right|^n\cdot \mathcal{C} \widetilde{\Gamma}_p(n) } \exp \left( -\sum_{i=1}^p G_i^H\mathbf M^{-1} G_i \right )

which is quite close to the complex multivariate pdf of G itself. The elements of G conventionally have circular symmetry such that \mathbb{E}[GG^T] = 0 .

Inverse Complex Wishart

The distribution of the inverse complex Wishart distribution of \mathbf{Y} = \mathbf{S^{-1}} according to Goodman,{{Cite journal|last=Goodman|first=N R|date=1963|title=Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)|journal=Ann. Math. Statist.|volume=34|pages=152–177|doi=10.1214/aoms/1177704250|doi-access=free}} Shaman{{Cite journal|last=Shaman|first=Paul|date=1980|title=The Inverted Complex Wishart Distribution and Its Application to Spectral Estimation|journal=Journal of Multivariate Analysis|volume=10|pages=51–59|doi=10.1016/0047-259X(80)90081-0|doi-access=free}} is

: f_Y(\mathbf{Y}) = \frac{

\left |\mathbf{Y} \right|^{-(n+p)} e^{-\operatorname{tr}(\mathbf M\mathbf{Y^{-1}}) }

}

{

\left|\mathbf{M}\right|^{-n}\cdot\mathcal{C}\widetilde{\Gamma}_p(n)

}, \;\;\; n\ge p, \;\;\; \det \left(\mathbf{Y}\right) > 0

where \mathbf{M} = \mathbf{\Gamma^{-1}}.

If derived via a matrix inversion mapping, the result depends on the complex Jacobian determinant

: \mathcal{C}J_Y(Y^{-1}) = \left | Y \right |^{-2p}

Goodman and others{{Cite web|url=http://www.physics.drexel.edu/~dcross/academics/papers/jacobian.pdf|title=On the Relation between Real and Complex Jacobian Determinants|last=Cross|first=D J|date=May 2008|website=drexel.edu}} discuss such complex Jacobians.

Eigenvalues

The probability distribution of the eigenvalues of the complex Hermitian Wishart distribution are given by, for example, James{{Cite journal|last=James|first=A. T.|date=1964|title=Distributions of Matrix Variates and Latent Roots Derived from Normal Samples|journal=Ann. Math. Statist.|volume=35|issue=2|pages=475–501|doi=10.1214/aoms/1177703550|doi-access=free}} and Edelman.{{Cite journal|last=Edelman|first=Alan|date=October 1988|title=Eigenvalues and Condition Numbers of Random Matrices|url=https://dspace.mit.edu/bitstream/1721.1/14322/2/21864285-MIT.pdf|journal=SIAM J. Matrix Anal. Appl.|volume=9 |issue=4|pages=543–560|doi=10.1137/0609045|hdl=1721.1/14322|hdl-access=free}} For a p \times p matrix with \nu \ge p degrees of freedom we have

: f(\lambda_1\dots\lambda_p)=\tilde {K}_{\nu,p} \exp \left ( - \frac{1}{2} \sum_{i=1}^p \lambda_i \right )

\prod_{i=1}^p \lambda_i^{\nu - p} \prod_{i

\;\;\; \lambda_i \in \mathbb{R} \ge 0

where

: \tilde {K}_{\nu,p}^{-1} = 2^{p\nu} \prod_{i=1}^p \Gamma (\nu - i+1) \Gamma (p-i+1)

Note however that Edelman uses the "mathematical" definition of a complex normal variable Z = X + iY where iid X and Y each have unit variance and the variance of Z = \mathbf{E} \left(X^2 + Y^2 \right ) = 2. For the definition more common in engineering circles, with X and Y each having 0.5 variance, the eigenvalues are reduced by a factor of 2.

While this expression gives little insight, there are approximations for marginal eigenvalue distributions. From Edelman we have that if S is a sample from the complex Wishart distribution with p = \kappa \nu, \;\; 0 \le \kappa \le 1 such that S_{p \times p} \sim \mathcal{CW}\left( 2\mathbf{I}, \frac{p}{\kappa} \right)

then in the limit p \rightarrow \infty the distribution of eigenvalues converges in probability to the Marchenko–Pastur distribution function

: p_\lambda(\lambda) = \frac

{\sqrt { [\lambda/2 - ( \sqrt {\kappa} -1 )^2 ][\sqrt {\kappa} +1 )^2 - \lambda /2 ] }}

{ 4\pi \kappa (\lambda /2)}, \;\;\; 2( \sqrt {\kappa} -1)^2 \le \lambda \le 2(\sqrt {\kappa} +1 )^2,

\;\;\; 0 \le \kappa \le 1

This distribution becomes identical to the real Wishart case, by replacing \lambda by 2\lambda , on account of the doubled sample variance, so in the case S_{p \times p} \sim \mathcal{CW} \left( \mathbf{I}, \frac{p}{\kappa} \right) , the pdf reduces to the real Wishart one:

: p_\lambda(\lambda) = \frac

{\sqrt {[\lambda - ( \sqrt {\kappa} -1 )^2 ][\sqrt {\kappa} +1 )^2 - \lambda ] }}

{ 2\pi \kappa \lambda}, \;\;\; (\sqrt {\kappa} -1)^2 \le \lambda \le (\sqrt {\kappa} +1 )^2,

\;\;\; 0 \le \kappa \le 1

A special case is \kappa = 1

: p_\lambda(\lambda) = \frac {1}{4\pi} \left (\frac {8-\lambda}{\lambda} \right )^{\frac{1}{2}}, \; 0 \le \lambda \le 8

or, if a Var(Z) = 1 convention is used then

: p_\lambda(\lambda) = \frac {1}{2\pi} \left (\frac {4-\lambda}{\lambda} \right )^{\frac{1}{2}}, \; 0 \le \lambda \le 4 .

The Wigner semicircle distribution arises by making the change of variable y = \pm\sqrt{\lambda} in the latter and selecting the sign of y randomly yielding pdf

: p_y(y) = \frac {1}{2\pi} \left ( 4-y^2 \right )^{\frac{1}{2}}, \; -2 \le y \le 2

In place of the definition of the Wishart sample matrix above, S_{p \times p} = \sum_{j=1}^\nu G_jG_j^H , we can define a Gaussian ensemble

: \mathbf{G}_{i,j} = [G_1 \dots G_\nu ] \in \mathbb{C}^{\,p \times \nu }

such that S is the matrix product S = \mathbf{G}\mathbf{G^H} . The real non-negative eigenvalues of S are then the modulus-squared singular values of the ensemble \mathbf{G} and the moduli of the latter have a quarter-circle distribution.

In the case \kappa > 1 such that \nu < p then S is rank deficient with at least p - \nu null eigenvalues. However the singular values of \mathbf{G} are invariant under transposition so, redefining \tilde{S} = \mathbf{G^H}\mathbf{G} , then \tilde{S}_{\nu \times \nu} has a complex Wishart distribution, has full rank almost certainly, and eigenvalue distributions can be obtained from \tilde{S} in lieu, using all the previous equations.

In cases where the columns of \mathbf{G} are not linearly independent and \tilde{S}_{\nu \times \nu} remains singular, a QR decomposition can be used to reduce G to a product like

:

\mathbf{G} = Q \begin{bmatrix} \mathbf{R} \\ 0 \end{bmatrix}

such that \mathbf{R}_{q \times q}, \;\; q \le \nu is upper triangular with full rank and \tilde\tilde{S}_{q \times q} = \mathbf{R^H}\mathbf{R} has further reduced dimensionality.

The eigenvalues are of practical significance in radio communications theory since they define the Shannon channel capacity of a \nu \times p MIMO wireless channel which, to first approximation, is modeled as a zero-mean complex Gaussian ensemble.

References