complex normal distribution

{{Short description|Statistical distribution of complex random variables}}

{{Probability distribution

| name = Complex normal

| type = multivariate

| pdf_image =

| cdf_image =

| notation =

| parameters = \mathbf{\mu} \in \mathbb{C}^nlocation

\Gamma \in \mathbb{C}^{n \times n}covariance matrix (positive semi-definite matrix)

C \in \mathbb{C}^{n \times n}relation matrix (complex symmetric matrix)

| support = \mathbb{C}^n

| pdf = complicated, see text

| mean = \mathbf{\mu}

| mode = \mathbf{\mu}

| variance = \Gamma

| cf =

\exp\!\big\{i\operatorname{Re}(\overline{w}'\mu) - \tfrac{1}{4}\big(\overline{w}'\Gamma w + \operatorname{Re}(\overline{w}'C\overline{w})\big)\big\}

}}

In probability theory, the family of complex normal distributions, denoted \mathcal{CN} or \mathcal{N}_{\mathcal{C}}, characterizes complex random variables whose real and imaginary parts are jointly normal.{{cite journal

| first = N.R.

| last = Goodman

| year = 1963

| title = Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)

| journal = The Annals of Mathematical Statistics

| volume = 34

| issue = 1

| pages = 152–177

| jstor = 2991290

| doi=10.1214/aoms/1177704250

| doi-access = free

}} The complex normal family has three parameters: location parameter μ, covariance matrix \Gamma, and the relation matrix C. The standard complex normal is the univariate distribution with \mu = 0, \Gamma=1, and C=0.

An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: \mu = 0 and C=0 .[http://www.rle.mit.edu/rgallager/documents/CircSymGauss.pdf bookchapter, Gallager.R], pg9. This case is used extensively in signal processing, where it is sometimes referred to as just complex normal in the literature.

Definitions

=Complex standard normal random variable=

The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable Z whose real and imaginary parts are independent normally distributed random variables with mean zero and variance 1/2.{{cite book | author=Lapidoth, A.| title=A Foundation in Digital Communication| publisher=Cambridge University Press | year=2009 | isbn=9780521193955}}{{rp|p. 494}}{{cite book |first=David |last=Tse |year=2005 |title=Fundamentals of Wireless Communication |publisher=Cambridge University Press|isbn=9781139444668 |url=https://books.google.com/books?id=GdsLAQAAQBAJ&q=%22random+variable%22}}{{rp|pp. 501}} Formally,

{{Equation box 1

|indent =

|title=

|equation = {{NumBlk||Z \sim \mathcal{CN}(0,1) \quad \iff \quad \Re(Z) \perp\!\!\!\perp \Im(Z) \text{ and } \Re(Z) \sim \mathcal{N}(0,1/2) \text{ and } \Im(Z) \sim \mathcal{N}(0,1/2)|{{EquationRef|Eq.1}}}}

|cellpadding= 6

|border

|border colour = #0073CF

|background colour=#F5FFFA}}

where Z \sim \mathcal{CN}(0,1) denotes that Z is a standard complex normal random variable.

=Complex normal random variable=

Suppose X and Y are real random variables such that (X,Y)^{\mathrm T} is a 2-dimensional normal random vector. Then the complex random variable Z=X+iY is called complex normal random variable or complex Gaussian random variable.{{rp|p. 500}}

{{Equation box 1

|indent =

|title=

|equation = {{NumBlk||Z \text{ complex normal random variable} \quad \iff \quad (\Re(Z),\Im(Z))^{\mathrm T} \text{ real normal random vector} |{{EquationRef|Eq.2}}}}

|cellpadding= 6

|border

|border colour = #0073CF

|background colour=#F5FFFA}}

=Complex standard normal random vector=

A n-dimensional complex random vector \mathbf{Z}=(Z_1,\ldots,Z_n)^{\mathrm T} is a complex standard normal random vector or complex standard Gaussian random vector if its components are independent and all of them are standard complex normal random variables as defined above.{{rp|p. 502}}{{rp|pp. 501}}

That \mathbf{Z} is a standard complex normal random vector is denoted \mathbf{Z} \sim \mathcal{CN}(0,\boldsymbol{I}_n).

{{Equation box 1

|indent =

|title=

|equation = {{NumBlk||\mathbf{Z} \sim \mathcal{CN}(0,\boldsymbol{I}_n) \quad \iff (Z_1,\ldots,Z_n) \text{ independent} \text{ and for } 1 \leq i \leq n : Z_i \sim \mathcal{CN}(0,1)|{{EquationRef|Eq.3}}}}

|cellpadding= 6

|border

|border colour = #0073CF

|background colour=#F5FFFA}}

=Complex normal random vector=

If \mathbf{X}=(X_1,\ldots,X_n)^{\mathrm T} and \mathbf{Y}=(Y_1,\ldots,Y_n)^{\mathrm T} are random vectors in \mathbb{R}^n such that [\mathbf{X},\mathbf{Y}] is a normal random vector with 2n components. Then we say that the complex random vector

:

\mathbf{Z} = \mathbf{X} + i \mathbf{Y} \,

is a complex normal random vector or a complex Gaussian random vector.

{{Equation box 1

|indent =

|title=

|equation = {{NumBlk||\mathbf{Z} \text{ complex normal random vector} \quad \iff \quad (\Re(\mathbf{Z}^{\mathrm T}),\Im(\mathbf{Z}^{\mathrm T}))^{\mathrm T} = (\Re(Z_1),\ldots,\Re(Z_n),\Im(Z_1),\ldots,\Im(Z_n))^{\mathrm T} \text{ real normal random vector} |{{EquationRef|Eq.4}}}}

|cellpadding= 6

|border

|border colour = #0073CF

|background colour=#F5FFFA}}

Mean, covariance, and relation{{anchor|Mean and covariance}}

The complex Gaussian distribution can be described with 3 parameters:{{cite journal

| last = Picinbono

| first = Bernard

| year = 1996

| title = Second-order complex random vectors and normal distributions

| journal = IEEE Transactions on Signal Processing

| volume = 44

| issue = 10

| pages = 2637–2640

| doi=10.1109/78.539051

| bibcode = 1996ITSP...44.2637P

| url = https://ieeexplore-ieee-org.ezp1.lib.umn.edu/document/539051

}}

:

\mu = \operatorname{E}[\mathbf{Z}], \quad

\Gamma = \operatorname{E}[(\mathbf{Z}-\mu)({\mathbf{Z}}-\mu)^{\mathrm H}], \quad

C = \operatorname{E}[(\mathbf{Z}-\mu)(\mathbf{Z}-\mu)^{\mathrm T}],

where \mathbf{Z}^{\mathrm T} denotes matrix transpose of \mathbf{Z}, and \mathbf{Z}^{\mathrm H} denotes conjugate transpose.{{rp|p. 504}}{{rp|pp. 500}}

Here the location parameter \mu is a n-dimensional complex vector; the covariance matrix \Gamma is Hermitian and non-negative definite; and, the relation matrix or pseudo-covariance matrix C is symmetric. The complex normal random vector

\mathbf{Z}

can now be denoted as

\mathbf{Z}\ \sim\ \mathcal{CN}(\mu,\ \Gamma,\ C).

Moreover, matrices \Gamma and C are such that the matrix

:

P = \overline{\Gamma} - {C}^{\mathrm H}\Gamma^{-1}C

is also non-negative definite where \overline{\Gamma} denotes the complex conjugate of \Gamma.

Relationships between covariance matrices

{{main|Complex random vector#Covariance matrix and pseudo-covariance matrix}}

As for any complex random vector, the matrices \Gamma and C can be related to the covariance matrices of \mathbf{X} = \Re(\mathbf{Z}) and \mathbf{Y} = \Im(\mathbf{Z}) via expressions

: \begin{align}

& V_{XX} \equiv \operatorname{E}[(\mathbf{X}-\mu_X)(\mathbf{X}-\mu_X)^\mathrm T] = \tfrac{1}{2}\operatorname{Re}[\Gamma + C], \quad

V_{XY} \equiv \operatorname{E}[(\mathbf{X}-\mu_X)(\mathbf{Y}-\mu_Y)^\mathrm T] = \tfrac{1}{2}\operatorname{Im}[-\Gamma + C], \\

& V_{YX} \equiv \operatorname{E}[(\mathbf{Y}-\mu_Y)(\mathbf{X}-\mu_X)^\mathrm T] = \tfrac{1}{2}\operatorname{Im}[\Gamma + C], \quad\,

V_{YY} \equiv \operatorname{E}[(\mathbf{Y}-\mu_Y)(\mathbf{Y}-\mu_Y)^\mathrm T] = \tfrac{1}{2}\operatorname{Re}[\Gamma - C],

\end{align}

and conversely

: \begin{align}

& \Gamma = V_{XX} + V_{YY} + i(V_{YX} - V_{XY}), \\

& C = V_{XX} - V_{YY} + i(V_{YX} + V_{XY}).

\end{align}

Density function

The probability density function for complex normal distribution can be computed as

: \begin{align}

f(z) &= \frac{1}{\pi^n\sqrt{\det(\Gamma)\det(P)}}\,

\exp\!\left\{-\frac12 \begin{bmatrix} z - \mu \\ \overline z -\overline \mu\end{bmatrix}^{\mathrm H}

\begin{bmatrix}\Gamma & C \\ \overline{C}&\overline\Gamma\end{bmatrix}^{\!\!-1}\!

\begin{bmatrix}z-\mu \\ \overline{z}-\overline{\mu}\end{bmatrix}

\right\} \\[8pt]

&= \tfrac{\sqrt{\det\left(\overline{P^{-1}}-R^{\ast} P^{-1}R\right)\det(P^{-1})}}{\pi^n}\,

e^{ -(z-\mu)^\ast\overline{P^{-1}}(z-\mu) +

\operatorname{Re}\left((z-\mu)^\intercal R^\intercal\overline{P^{-1}}(z-\mu)\right)},

\end{align}

where R=C^{\mathrm H} \Gamma^{-1} and P=\overline{\Gamma}-RC.

Characteristic function

The characteristic function of complex normal distribution is given by

:

\varphi(w) = \exp\!\big\{i\operatorname{Re}(\overline{w}'\mu) - \tfrac{1}{4}\big(\overline{w}'\Gamma w + \operatorname{Re}(\overline{w}'C\overline{w})\big)\big\},

where the argument w is an n-dimensional complex vector.

Properties

  • If \mathbf{Z} is a complex normal n-vector, \boldsymbol{A} an m×n matrix, and b a constant m-vector, then the linear transform \boldsymbol{A}\mathbf{Z}+b will be distributed also complex-normally:

:

Z\ \sim\ \mathcal{CN}(\mu,\, \Gamma,\, C) \quad \Rightarrow \quad AZ+b\ \sim\ \mathcal{CN}(A\mu+b,\, A \Gamma A^{\mathrm H},\, A C A^{\mathrm T})

  • If \mathbf{Z} is a complex normal n-vector, then

:

2\Big[ (\mathbf{Z}-\mu)^{\mathrm H} \overline{P^{-1}}(\mathbf{Z}-\mu) -

\operatorname{Re}\big((\mathbf{Z}-\mu)^{\mathrm T} R^{\mathrm T} \overline{P^{-1}}(\mathbf{Z}-\mu)\big)

\Big]\ \sim\ \chi^2(2n)

  • Central limit theorem. If Z_1,\ldots,Z_T are independent and identically distributed complex random variables, then

:

\sqrt{T}\Big( \tfrac{1}{T}\textstyle\sum_{t=1}^T Z_t - \operatorname{E}[Z_t]\Big) \ \xrightarrow{d}\

\mathcal{CN}(0,\,\Gamma,\,C),

:where \Gamma = \operatorname{E}[Z Z^{\mathrm H}] and C = \operatorname{E}[Z Z^{\mathrm T}].

  • The modulus of a complex normal random variable follows a Hoyt distribution.{{cite web |title=The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2) |author=Daniel Wollschlaeger |url=http://finzi.psych.upenn.edu/usr/share/doc/library/shotGroups/html/hoyt.html }}{{Dead link|date=July 2019 |bot=InternetArchiveBot |fix-attempted=yes }}

Circularly-symmetric central case

=Definition=

A complex random vector \mathbf{Z} is called circularly symmetric if for every deterministic \varphi \in [-\pi,\pi) the distribution of e^{\mathrm i \varphi}\mathbf{Z} equals the distribution of \mathbf{Z} .{{rp|pp. 500–501}}

{{main|Complex random vector#Circular symmetry}}

Central normal complex random vectors that are circularly symmetric are of particular interest because they are fully specified by the covariance matrix \Gamma.

The circularly-symmetric (central) complex normal distribution corresponds to the case of zero mean and zero relation matrix, i.e. \mu = 0 and C=0.{{rp|p. 507}}[http://www.rle.mit.edu/rgallager/documents/CircSymGauss.pdf bookchapter, Gallager.R] This is usually denoted

:\mathbf{Z} \sim \mathcal{CN}(0,\,\Gamma)

=Distribution of real and imaginary parts=

If \mathbf{Z}=\mathbf{X}+i\mathbf{Y} is circularly-symmetric (central) complex normal, then the vector [\mathbf{X}, \mathbf{Y}] is multivariate normal with covariance structure

:

\begin{pmatrix}\mathbf{X} \\ \mathbf{Y}\end{pmatrix} \ \sim\

\mathcal{N}\Big( \begin{bmatrix}

0 \\

0

\end{bmatrix},\

\tfrac{1}{2}\begin{bmatrix}

\operatorname{Re}\,\Gamma & -\operatorname{Im}\,\Gamma \\

\operatorname{Im}\,\Gamma & \operatorname{Re}\,\Gamma

\end{bmatrix}\Big)

where \Gamma=\operatorname{E}[\mathbf{Z} \mathbf{Z}^{\mathrm H}].

=Probability density function=

For nonsingular covariance matrix \Gamma, its distribution can also be simplified as{{rp|p. 508}}

:

f_{\mathbf{Z}}(\mathbf{z}) = \tfrac{1}{\pi^n \det(\Gamma)}\, e^{ -(\mathbf{z}-\mathbf{\mu})^{\mathrm H} \Gamma^{-1} (\mathbf{z}-\mathbf{\mu})}

.

Therefore, if the non-zero mean \mu and covariance matrix \Gamma are unknown, a suitable log likelihood function for a single observation vector z would be

:

\ln(L(\mu,\Gamma)) = -\ln (\det(\Gamma)) -\overline{(z - \mu)}' \Gamma^{-1} (z - \mu) -n \ln(\pi).

The standard complex normal (defined in {{EquationNote|Eq.1}}) corresponds to the distribution of a scalar random variable with \mu = 0, C=0 and \Gamma=1. Thus, the standard complex normal distribution has density

:

f_Z(z) = \tfrac{1}{\pi} e^{-\overline{z}z} = \tfrac{1}{\pi} e^{-|z|^2}.

=Properties=

The above expression demonstrates why the case C=0, \mu = 0 is called “circularly-symmetric”. The density function depends only on the magnitude of z but not on its argument. As such, the magnitude |z| of a standard complex normal random variable will have the Rayleigh distribution and the squared magnitude |z|^2 will have the exponential distribution, whereas the argument will be distributed uniformly on [-\pi,\pi].

If \left\{ \mathbf{Z}_1,\ldots,\mathbf{Z}_k \right\} are independent and identically distributed n-dimensional circular complex normal random vectors with \mu = 0, then the random squared norm

:

Q = \sum_{j=1}^k \mathbf{Z}_j^{\mathrm H} \mathbf{Z}_j = \sum_{j=1}^k \| \mathbf{Z}_j \|^2

has the generalized chi-squared distribution and the random matrix

:

W = \sum_{j=1}^k \mathbf{Z}_j \mathbf{Z}_j^{\mathrm H}

has the complex Wishart distribution with k degrees of freedom. This distribution can be described by density function

:

f(w) = \frac{\det(\Gamma^{-1})^k\det(w)^{k-n}}{\pi^{n(n-1)/2}\prod_{j=1}^k(k-j)!}\

e^{-\operatorname{tr}(\Gamma^{-1}w)}

where k \ge n, and w is a n \times n nonnegative-definite matrix.

See also

References

{{More footnotes needed|date=July 2011}}

{{reflist}}

{{ProbDistributions|continuous-infinite}}

Category:Continuous distributions

Category:Multivariate continuous distributions

Category:Complex distributions