convolution theorem
{{Short description|Theorem in mathematics}}
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). Other versions of the convolution theorem are applicable to various Fourier-related transforms.
Functions of a continuous variable
Consider two functions and with Fourier transforms and :
:
U(f) &\triangleq \mathcal{F}\{u\}(f) = \int_{-\infty}^{\infty}u(x) e^{-i 2 \pi f x} \, dx, \quad f \in \mathbb{R}\\
V(f) &\triangleq \mathcal{F}\{v\}(f) = \int_{-\infty}^{\infty}v(x) e^{-i 2 \pi f x} \, dx, \quad f \in \mathbb{R}
\end{align}
where denotes the Fourier transform operator. The transform may be normalized in other ways, in which case constant scaling factors (typically or ) will appear in the convolution theorem below. The convolution of and is defined by:
:
In this context the asterisk denotes convolution, instead of standard multiplication. The tensor product symbol is sometimes used instead.
The convolution theorem states that:{{rp|eq.8}}
{{Equation box 1
|indent=:|cellpadding=0|border=0|background colour=white
|equation={{NumBlk||
|{{EquationRef|Eq.1a}} }} }}
Applying the inverse Fourier transform produces the corollary:{{rp|eqs.7,10}}
{{Equation box 1|title=Convolution theorem
|indent=|cellpadding=6|border=|border colour=#0073CF|background colour=#F5FFFA
|equation={{NumBlk|:|
|{{EquationRef|Eq.1b}} }} }}
The theorem also generally applies to multi-dimensional functions.
{{Collapse top|title=Multi-dimensional derivation of Eq.1}}
Consider functions in Lp-space with Fourier transforms :
:
\begin{align}
U(f) &\triangleq \mathcal{F}\{u\}(f) = \int_{\mathbb{R}^n} u(x) e^{-i 2 \pi f \cdot x} \, dx, \quad f \in \mathbb{R}^n\\
V(f) &\triangleq \mathcal{F}\{v\}(f) = \int_{\mathbb{R}^n} v(x) e^{-i 2 \pi f \cdot x} \, dx,
\end{align}
where indicates the inner product of : and
The convolution of and is defined by:
:
Also:
:
Hence by Fubini's theorem we have that so its Fourier transform is defined by the integral formula:
:
\begin{align}
R(f) \triangleq \mathcal{F}\{r\}(f) &= \int_{\mathbb{R}^n} r(x) e^{-i 2 \pi f \cdot x}\, dx\\
&= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} u(\tau) v(x-\tau)\, d\tau\right)\, e^{-i 2 \pi f \cdot x}\, dx.
\end{align}
Note that Hence by the argument above we may apply Fubini's theorem again (i.e. interchange the order of integration):
:
\begin{align}
R(f) &= \int_{\mathbb{R}^n} u(\tau)
\underbrace{\left(\int_{\mathbb{R}^n} v(x-\tau)\ e^{-i 2 \pi f \cdot x}\,dx\right)}_{V(f)\ e^{-i 2 \pi f \cdot \tau}}\,d\tau\\
&=\underbrace{\left(\int_{\mathbb{R}^n} u(\tau)\ e^{-i 2\pi f \cdot \tau}\,d\tau\right)}_{U(f)}\ V(f).
\end{align}
{{Collapse bottom}}
This theorem also holds for the Laplace transform, the two-sided Laplace transform and, when suitably modified, for the Mellin transform and Hartley transform (see Mellin inversion theorem). It can be extended to the Fourier transform of abstract harmonic analysis defined over locally compact abelian groups.
= Periodic convolution (Fourier series coefficients) =
Consider -periodic functions and which can be expressed as periodic summations:
: and
In practice the non-zero portion of components and are often limited to duration but nothing in the theorem requires that.
The Fourier series coefficients are:
:
U[k] &\triangleq \mathcal{F}\{u_{_P}\}[k] = \frac{1}{P} \int_P u_{_P}(x) e^{-i 2\pi k x/P} \, dx, \quad k \in \mathbb{Z}; \quad \quad \scriptstyle \text{integration over any interval of length } P\\
V[k] &\triangleq \mathcal{F}\{v_{_P}\}[k] = \frac{1}{P} \int_P v_{_P}(x) e^{-i 2\pi k x/P} \, dx, \quad k \in \mathbb{Z}
\end{align}
where denotes the Fourier series integral.
- The product: is also -periodic, and its Fourier series coefficients are given by the discrete convolution of the and sequences:
:
- The convolution:
:
\{u_{_P} * v\}(x)\ &\triangleq \int_{-\infty}^{\infty} u_{_P}(x-\tau)\cdot v(\tau)\ d\tau\\
&\equiv \int_P u_{_P}(x-\tau)\cdot v_{_P}(\tau)\ d\tau; \quad \quad \scriptstyle \text{integration over any interval of length } P
\end{align}
is also -periodic, and is called a periodic convolution.
{{Collapse top|title=Derivation of periodic convolution}}
:
\int_{-\infty}^\infty u_{_P}(x - \tau) \cdot v(\tau)\,d\tau
&= \sum_{k=-\infty}^\infty \left[\int_{x_o+kP}^{x_o+(k+1)P} u_{_P}(x - \tau) \cdot v(\tau)\ d\tau\right] \quad x_0 \text{ is an arbitrary parameter}\\
&=\sum_{k=-\infty}^\infty \left[\int_{x_o}^{x_o+P} \underbrace{u_{_P}(x - \tau-kP)}_{u_{_P}(x - \tau), \text{ by periodicity}} \cdot v(\tau + kP)\ d\tau\right] \quad \text{substituting } \tau \rightarrow \tau+kP\\
&=\int_{x_o}^{x_o+P} u_{_P}(x - \tau) \cdot \underbrace{\left[\sum_{k=-\infty}^\infty v(\tau + kP)\right]}_{\triangleq \ v_{_P}(\tau)}\ d\tau
\end{align}
{{Collapse bottom}}
The corresponding convolution theorem is:
{{Equation box 1
|indent=|cellpadding=0|border=0|background colour=white
|equation={{NumBlk|:|
|{{EquationRef|Eq.2}} }} }}
{{Collapse top|title=Derivation of Eq.2}}
:
\mathcal{F}\{u_{_P} * v\}[k] &\triangleq \frac{1}{P} \int_P \left(\int_P u_{_P}(\tau)\cdot v_{_P}(x-\tau)\ d\tau\right) e^{-i 2\pi k x/P} \, dx\\
&= \int_P u_{_P}(\tau)\left(\frac{1}{P}\int_P v_{_P}(x-\tau)\ e^{-i 2\pi k x/P} dx\right) \, d\tau\\
&= \int_P u_{_P}(\tau)\ e^{-i 2\pi k \tau/P}
\underbrace{\left(\frac{1}{P}\int_P v_{_P}(x-\tau)\ e^{-i 2\pi k (x-\tau)/P} dx\right)}_{V[k], \quad \text{due to periodicity}} \, d\tau\\
&=\underbrace{\left(\int_P\ u_{_P}(\tau)\ e^{-i 2\pi k \tau/P} d\tau\right)}_{P\cdot U[k]}\ V[k].
\end{align}
{{Collapse bottom
}}
Functions of a discrete variable (sequences)
By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now denotes the discrete-time Fourier transform (DTFT) operator. Consider two sequences and with transforms and :
:
U(f) &\triangleq \mathcal{F}\{u\}(f) = \sum_{n=-\infty}^{\infty} u[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}, \\
V(f) &\triangleq \mathcal{F}\{v\}(f) = \sum_{n=-\infty}^{\infty} v[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}.
\end{align}
The {{slink|Convolution#Discrete convolution|nopage=y}} of and is defined by:
:
The convolution theorem for discrete sequences is:{{rp|p.60 (2.169)}}
{{Equation box 1
|indent=|cellpadding=0|border=0|background colour=white
|equation={{NumBlk|:|
|{{EquationRef|Eq.3}} }} }}
= Periodic convolution =
and as defined above, are periodic, with a period of 1. Consider -periodic sequences and :
: and
These functions occur as the result of sampling and at intervals of and performing an inverse discrete Fourier transform (DFT) on samples (see {{slink|Discrete-time_Fourier_transform#Sampling_the_DTFT|nopage=y}}). The discrete convolution:
:
is also -periodic, and is called a periodic convolution. Redefining the operator as the -length DFT, the corresponding theorem is:{{rp|p. 548}}
{{Equation box 1
|indent=|cellpadding=0|border=0|background colour=white
|equation={{NumBlk|:|
|{{EquationRef|Eq.4a}} }} }}
And therefore:
{{Equation box 1
|indent=|cellpadding=0|border=0|background colour=white
|equation={{NumBlk|:|
|{{EquationRef|Eq.4b}} }} }}
Under the right conditions, it is possible for this -length sequence to contain a distortion-free segment of a convolution. But when the non-zero portion of the or sequence is equal or longer than some distortion is inevitable. Such is the case when the sequence is obtained by directly sampling the DTFT of the infinitely long {{slink|Hilbert transform|Discrete Hilbert transform|nopage=y}} impulse response.{{efn-ua
|1=An example is the MATLAB function, [http://www.mathworks.com/help/toolbox/signal/ref/hilbert.html;jsessionid=67ed4e69e9729363548abed31054 hilbert(u,N)].}}
For and sequences whose non-zero duration is less than or equal to a final simplification is:
{{Equation box 1
|title=Circular convolution
|indent=|cellpadding=6 |border= |border colour=#0073CF |background colour=#F5FFFA
|equation={{NumBlk|:|
|{{EquationRef|Eq.4c}} }} }}
This form is often used to efficiently implement numerical convolution by computer. (see {{slink|Convolution|Fast convolution algorithms|nopage=y}} and {{slink|Circular_convolution|Example|nopage=y}})
As a partial reciprocal, it has been shown {{cite book |last1=Amiot |first1=Emmanuel |title=Music through Fourier Space |series=Computational Music Science |date=2016 |publisher=Springer |location=Zürich |isbn=978-3-319-45581-5 |page=8 |doi=10.1007/978-3-319-45581-5 |s2cid=6224021 |url=https://link.springer.com/book/10.1007/978-3-319-45581-5 |ref=Theorem 1.11}}
that any linear transform that turns convolution into a product is the DFT (up to a permutation of coefficients).
{{Collapse top|title=Derivations of Eq.4}}
A time-domain derivation proceeds as follows:
:
\begin{align}
\scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k] &\triangleq \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]\right) e^{-i 2\pi kn/N}\\
&= \sum_{m=0}^{N-1} u_{_N}[m] \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi kn/N}\right)\\
&= \sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N}
\underbrace{
\left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi k(n-m)/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\quad \scriptstyle \text{due to periodicity}}\\
&= \underbrace{
\left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]}
\left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right).
\end{align}
A frequency-domain derivation follows from {{slink|DTFT|Periodic data|nopage=y}}, which indicates that the DTFTs can be written as:
:
\mathcal{F}\{u_{_N} * v\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k]\right)\cdot \delta\left(f-k/N\right). \quad \scriptstyle \mathsf{(Eq.5a)}
:
\mathcal{F}\{u_{_N}\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \delta\left(f-k/N\right).
The product with is thereby reduced to a discrete-frequency function:
:
\begin{align}
\mathcal{F}\{u_{_N} * v\}(f) &= G_{_N}(f) V(f) \\
&= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(f)\cdot \delta\left(f-k/N\right)\\
&= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(k/N)\cdot \delta\left(f-k/N\right)\\
&= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right) \cdot \delta\left(f-k/N\right), \quad \scriptstyle \mathsf{(Eq.5b)}
\end{align}
where the equivalence of and follows from {{slink|DTFT|Sampling the DTFT|nopage=y}}. Therefore, the equivalence of (5a) and (5b) requires:
:
\displaystyle {\{u_{_N} * v\}[k]}
= \left(\scriptstyle{\rm DFT}
\displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right).
We can also verify the inverse DTFT of (5b):
:
\begin{align}
(u_{_N} * v)[n] & = \int_{0}^{1} \left(\frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \delta\left(f-k/N\right)\right)\cdot e^{i 2 \pi f n} df \\
& = \frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \underbrace{\left(\int_{0}^{1} \delta\left(f-k/N\right)\cdot e^{i 2 \pi f n} df\right)}_{\text{0, for} \ k\ \notin\ [0,\ N)} \\
& = \frac{1}{N} \sum_{k=0}^{N-1} \bigg(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\bigg)\cdot e^{i 2 \pi \frac{n}{N} k}\\
&=\ \scriptstyle{\rm DFT}^{-1} \displaystyle \bigg( \scriptstyle{\rm DFT}\displaystyle \{u_{_N}\}\cdot \scriptstyle{\rm DFT}\displaystyle \{v_{_N}\} \bigg).
\end{align}
{{Collapse bottom}}
Convolution theorem for inverse Fourier transform
There is also a convolution theorem for the inverse Fourier transform:
Here, "" represents the Hadamard product, and "" represents a convolution between the two matrices.
:
&\mathcal{F}\{u*v\} = \mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\\
&\mathcal{F}\{u \cdot v\}= \mathcal{F}\{u\}*\mathcal{F}\{v\}
\end{align}
so that
:
&u*v= \mathcal{F}^{-1}\left\{\mathcal{F}\{u\}\cdot\mathcal{F}\{v\}\right\}\\
&u \cdot v= \mathcal{F}^{-1}\left\{\mathcal{F}\{u\}*\mathcal{F}\{v\}\right\}
\end{align}
Convolution theorem for tempered distributions
The convolution theorem extends to tempered distributions.
Here, is an arbitrary tempered distribution:
:
&\mathcal{F}\{u*v\} = \mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\\
&\mathcal{F}\{\alpha \cdot v\}= \mathcal{F}\{\alpha\}*\mathcal{F}\{v\}.
\end{align}
But must be "rapidly decreasing" towards and in order to guarantee the existence of both, convolution and multiplication product. Equivalently, if is a smooth "slowly growing" ordinary function, it guarantees the existence of both, multiplication and convolution product.{{cite book | last=Horváth | first=John | author-link=John Horvath (mathematician) | title=Topological Vector Spaces and Distributions | publisher=Addison-Wesley Publishing Company | location=Reading, MA | year=1966}}{{cite book | last=Barros-Neto | first=José | title=An Introduction to the Theory of Distributions | publisher=Dekker | location=New York, NY | year=1973}}{{cite book | last=Petersen | first=Bent E. | title=Introduction to the Fourier Transform and Pseudo-Differential Operators | publisher=Pitman Publishing | location=Boston, MA | year=1983}}
In particular, every compactly supported tempered distribution, such as the Dirac delta, is "rapidly decreasing". Equivalently, bandlimited functions, such as the function that is constantly are smooth "slowly growing" ordinary functions. If, for example, is the Dirac comb both equations yield the Poisson summation formula and if, furthermore, is the Dirac delta then is constantly one and these equations yield the Dirac comb identity.
See also
Notes
{{notelist-ua}}
References
{{reflist|1|refs=
{{cite book |last1=McGillem |first1=Clare D. |last2=Cooper |first2=George R. |title=Continuous and Discrete Signal and System Analysis
|page=118 (3–102) |publisher=Holt, Rinehart and Winston
|edition=2 |date=1984 |isbn=0-03-061703-0}}
{{Citation |last1=Proakis |first1=John G. |last2=Manolakis |first2=Dimitri G. |title=Digital Signal Processing: Principles, Algorithms and Applications |page=297 |place=New Jersey |publisher=Prentice-Hall International |year=1996 |edition =3 |language=en |id=sAcfAQAAIAAJ |isbn=9780133942897 |bibcode=1996dspp.book.....P |url-access=registration |url=https://archive.org/details/digitalsignalpro00proa}}
{{cite book |last1=Rabiner |first1=Lawrence R. |author1-link=Lawrence Rabiner |last2=Gold |first2=Bernard |date=1975 |title=Theory and application of digital signal processing |page=59 (2.163) |location=Englewood Cliffs, NJ |publisher=Prentice-Hall, Inc. |isbn=978-0139141010 |url-access=registration |url=https://archive.org/details/theoryapplicatio00rabi}}
{{cite web |last1=Weisstein |first1=Eric W. |title=Convolution Theorem |url=https://mathworld.wolfram.com/ConvolutionTheorem.html |website=From MathWorld--A Wolfram Web Resource |access-date=8 February 2021}}
{{cite book
|last1=Oppenheim
|first1=Alan V.
|author-link=Alan V. Oppenheim
|last2=Schafer
|first2=Ronald W.
|author2-link=Ronald W. Schafer
|last3=Buck
|first3=John R.
|title=Discrete-time signal processing
|year=1999
|publisher=Prentice Hall
|location=Upper Saddle River, N.J.
|isbn=0-13-754920-2
|edition=2nd
|url-access=registration
|url=https://archive.org/details/discretetimesign00alan
}}
}}
{{refbegin}}
Further reading
- {{citation |first=Yitzhak |last=Katznelson |title=An introduction to Harmonic Analysis|year=1976|publisher=Dover |isbn=0-486-63331-4}}
- {{citation |first1=Bing |last1=Li |first2=G. Jogesh |last2=Babu |chapter=Convolution Theorem and Asymptotic Efficiency |title=A Graduate Course on Statistical Inference |location=New York |publisher=Springer |year=2019 |isbn=978-1-4939-9759-6 |pages=295–327 }}
- {{citation |last=Crutchfield |first=Steve |url=http://www.jhu.edu/signals/convolve/index.html |title=The Joy of Convolution |work=Johns Hopkins University |date=October 9, 2010 |access-date=November 19, 2010}}
{{refend}}
Additional resources
For a visual representation of the use of the convolution theorem in signal processing, see:
- Johns Hopkins University's Java-aided simulation: http://www.jhu.edu/signals/convolve/index.html
Category:Theorems in Fourier analysis
Category:Articles containing proofs