cubic-octahedral honeycomb#Truncated cubic-octahedral honeycomb

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|Cube-octahedron honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbol{(3,4,3,4)} or {(4,3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|label4|branch_10r|3ab|branch|label4}}
{{CDD|node_1|splitplit1u|branch3u|3a3buc-cross|branch3u_11|splitplit2u|node}} ↔ {{CDD|branchu_01r|3ab|branch_10lru|split2-44|node|labelh}} ↔ {{CDD|branch_10r|4a4b|branch|labels
}

|-

|bgcolor=#e7dcc3|Cells||{4,3} 40px
{3,4} 40px
r{4,3} 40px

|-

|bgcolor=#e7dcc3|Faces||triangle {3}
square {4}

|-

|bgcolor=#e7dcc3|Vertex figure||80px
rhombicuboctahedron

|-

|bgcolor=#e7dcc3|Coxeter group||[(4,3)[2]]

|-

|bgcolor=#e7dcc3|Properties||Vertex-transitive, edge-transitive

|}

In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, {{CDD|label4|branch_10r|3ab|branch|label4}}, and is named by its two regular cells.

{{Honeycomb}}

Images

Wide-angle perspective views:

File:H3 4343-0010 center ultrawide.png|Centered on cube

File:H3 4343-1000 center ultrawide.png|Centered on octahedron

File:H3 4343-0001 center ultrawide.png|Centered on cuboctahedron

It contains a subgroup H2 tiling, the alternated order-4 hexagonal tiling, {{CDD|nodes_11|3a3b-cross|nodes}}, with vertex figure (3.4)4.

: 240px

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(4,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram {{CDD|node_1|splitplit1u|branch3u|3a3buc-cross|branch3u_11|splitplit2u|node}}. This lower symmetry can be extended by restoring one mirror as {{CDD|branchu_01r|3ab|branch_10lru|split2-44|node}}.

class=wikitable

|+ Cells

{{CDD|nodes_11|2|node_1}} ↔ {{CDD|node_1|4|node_g|3sg|node_g}}
40px = 40px

| {{CDD|nodes|split2|node_1}} ↔ {{CDD|node_h0|4|node|3|node_1}}
40px = 40px

|{{CDD|nodes_11|split2|node}} ↔ {{CDD|node_h0|4|node_1|3|node}}
40px = 40px

Related honeycombs

There are 5 related uniform honeycombs generated within the same family, generated with 2 or more rings of the Coxeter group {{CDD|label4|branch|3ab|branch|label4}}: {{CDD|label4|branch_10r|3ab|branch_10l|label4}}, {{CDD|label4|branch_01r|3ab|branch_10l|label4}}, {{CDD|label4|branch_11|3ab|branch|label4}}, {{CDD|label4|branch_11|3ab|branch_10l|label4}}, {{CDD|label4|branch_11|3ab|branch_11|label4}}.

= Rectified cubic-octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|Rectified cubic-octahedral honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolr{(4,3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|label4|branch_01r|3ab|branch_10l|label4}}
bgcolor=#e7dcc3|Cellsr{4,3} 40px
rr{3,4} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure80px
cuboid
bgcolor=#e7dcc3|Coxeter group(4,3)[2], {{CDD|label4|branch_c1-2|3ab|branch_c2-1|label4}}
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The rectified cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cuboctahedron and rhombicuboctahedron cells, in a cuboid vertex figure. It has a Coxeter diagram {{CDD|label4|branch_01r|3ab|branch_10l|label4}}.

480px

:Perspective view from center of rhombicuboctahedron

{{Clear}}

= Cyclotruncated cubic-octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|Cyclotruncated cubic-octahedral honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolct{(4,3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|label4|branch_11|3ab|branch|label4}}
bgcolor=#e7dcc3|Cellst{4,3} 40px
{3,4} 40px
bgcolor=#e7dcc3|Facestriangle {3}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
square antiprism
bgcolor=#e7dcc3|Coxeter group(4,3)[2], {{CDD|label4|branch_c1|3ab|branch_c2|label4}}
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The cyclotruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cube and octahedron cells, in a square antiprism vertex figure. It has a Coxeter diagram {{CDD|label4|branch_11|3ab|branch|label4}}.

480px

:Perspective view from center of octahedron

It can be seen as somewhat analogous to the trioctagonal tiling, which has truncated square and triangle facets:

: 160px

{{Clear}}

= Cyclotruncated octahedral-cubic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|Cyclotruncated octahedral-cubic honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolct{(3,4,3,4)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|label4|branch_10r|3ab|branch_10l|label4}}
{{CDD|node_1|splitplit1u|branch3u_11|3a3buc-cross|branch3u_11|splitplit2u|node_1}} ↔ {{CDD|branchu_11|3ab|branch_11|split2-44|node|labelh}} ↔ {{CDD|branch_11|4a4b|branch|labels
}

|-

|bgcolor=#e7dcc3|Cells||{4,3} 40px
t{3,4} 40px

|-

|bgcolor=#e7dcc3|Faces||square {4}
hexagon {6}

|-

|bgcolor=#e7dcc3|Vertex figure||80px
triangular antiprism

|-

|bgcolor=#e7dcc3|Coxeter group||(4,3)[2], {{CDD|label4|branch_c1-2|3ab|branch_c1-2|label4}}

|-

|bgcolor=#e7dcc3|Properties||Vertex-transitive, edge-transitive

|}

The cyclotruncated octahedral-cubic honeycomb is a compact uniform honeycomb, constructed from cube and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram {{CDD|label4|branch_10r|3ab|branch_10l|label4}}.

480px

:Perspective view from center of cube

It contains an H2 subgroup tetrahexagonal tiling alternating square and hexagonal faces, with Coxeter diagram {{CDD|branch_11|split2-44|node}} or half symmetry {{CDD|nodes_11|3a3b-cross|nodes_11}}:

: 160px 160px

== Symmetry==

class=wikitable width=360 align=right

|+ Fundamental domains

valign=top

|120px
Trigonal trapezohedron
{{CDD|node_c1|splitplit1u|branch3u_c2|3a3buc-cross|branch3u_c1|splitplit2u|node_c2}} ↔ {{CDD|branch_c1-2|4a4b|branch|labels}}

|120px
Half domain
{{CDD|node_c1|splitplit1u|branch3u_c2|3a3buc-cross|branch3u_c3|splitplit2u|node_c4}} ↔ {{CDD|branchu_c1-4|3ab|branch_c2-3|split2-44|node|labelh}}

|120px
H2 subgroup, rhombic *3232
{{CDD|nodeab_c2|3a3b-cross|nodeab_c3}} ↔ {{CDD|branch_c2-3|split2-44|node|labelh}}

A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,4,3*)], {{CDD|branch_11|4a4b|branch|labels}}, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram {{CDD|node_1|splitplit1u|branch3u_11|3a3buc-cross|branch3u_11|splitplit2u|node_1}}. This lower symmetry can be extended by restoring one mirror as {{CDD|branchu_11|3ab|branch_11|split2-44|node}}.

class=wikitable

|+ Cells

{{CDD|nodes_11|2|node_1}} ↔ {{CDD|node_1|4|node_g|3sg|node_g}}
40px = 40px

|colspan=2|{{CDD|nodes_11|split2|node_1}} ↔ {{CDD|node_h0|4|node_1|3|node_1}}
40px = 40px

{{Clear}}

= Truncated cubic-octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|Truncated cubic-octahedral honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt{(4,3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|label4|branch_11|3ab|branch_10l|label4}}
bgcolor=#e7dcc3|Cellst{3,4} 40px
t{4,3} 40px
rr{3,4} 40px
tr{4,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
rectangular pyramid
bgcolor=#e7dcc3|Coxeter group[(4,3)[2]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The truncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated octahedron, truncated cube, rhombicuboctahedron, and truncated cuboctahedron cells, in a rectangular pyramid vertex figure. It has a Coxeter diagram {{CDD|label4|branch_11|3ab|branch_10l|label4}}.

480px

:Perspective view from center of rhombicuboctahedron

{{Clear}}

= Omnitruncated cubic-octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|Omnitruncated cubic-octahedral honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symboltr{(4,3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|label4|branch_11|3ab|branch_11|label4}}
bgcolor=#e7dcc3|Cellstr{3,4} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
Rhombic disphenoid
bgcolor=#e7dcc3|Coxeter group[2[(4,3)[2]]] or [(2,2)+[(4,3)[2]]], {{CDD|label4|branch_c1|3ab|branch_c1|label4}}
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive, cell-transitive

The omnitruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cuboctahedron cells, in a rhombic disphenoid vertex figure. It has a Coxeter diagram {{CDD|label4|branch_11|3ab|branch_11|label4}} with [2,2]+ (order 4) extended symmetry in its rhombic disphenoid vertex figure.

480px

:Perspective view from center of truncated cuboctahedron

{{Clear}}

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups

{{DEFAULTSORT:Order-4 Dodecahedral Honeycomb}}

Category:3-honeycombs