cubic-octahedral honeycomb#Truncated cubic-octahedral honeycomb
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|Cube-octahedron honeycomb | |
bgcolor=#e7dcc3|Type | Compact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | {(3,4,3,4)} or {(4,3,4,3)} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|label4|branch_10r|3ab|branch|label4}} {{CDD|node_1|splitplit1u|branch3u|3a3buc-cross|branch3u_11|splitplit2u|node}} ↔ {{CDD|branchu_01r|3ab|branch_10lru|split2-44|node|labelh}} ↔ {{CDD|branch_10r|4a4b|branch|labels |
|-
|bgcolor=#e7dcc3|Cells||{4,3} 40px
{3,4} 40px
r{4,3} 40px
|-
|bgcolor=#e7dcc3|Faces||triangle {3}
square {4}
|-
|bgcolor=#e7dcc3|Vertex figure||80px
rhombicuboctahedron
|-
|bgcolor=#e7dcc3|Coxeter group||[(4,3)[2]]
|-
|bgcolor=#e7dcc3|Properties||Vertex-transitive, edge-transitive
|}
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, {{CDD|label4|branch_10r|3ab|branch|label4}}, and is named by its two regular cells.
{{Honeycomb}}
Images
Wide-angle perspective views:
File:H3 4343-0010 center ultrawide.png|Centered on cube
File:H3 4343-1000 center ultrawide.png|Centered on octahedron
File:H3 4343-0001 center ultrawide.png|Centered on cuboctahedron
It contains a subgroup H2 tiling, the alternated order-4 hexagonal tiling, {{CDD|nodes_11|3a3b-cross|nodes}}, with vertex figure (3.4)4.
: 240px
Symmetry
A lower symmetry form, index 6, of this honeycomb can be constructed with [(4,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram {{CDD|node_1|splitplit1u|branch3u|3a3buc-cross|branch3u_11|splitplit2u|node}}. This lower symmetry can be extended by restoring one mirror as {{CDD|branchu_01r|3ab|branch_10lru|split2-44|node}}.
class=wikitable
|+ Cells |
{{CDD|nodes_11|2|node_1}} ↔ {{CDD|node_1|4|node_g|3sg|node_g}} 40px = 40px | {{CDD|nodes|split2|node_1}} ↔ {{CDD|node_h0|4|node|3|node_1}} |{{CDD|nodes_11|split2|node}} ↔ {{CDD|node_h0|4|node_1|3|node}} |
Related honeycombs
There are 5 related uniform honeycombs generated within the same family, generated with 2 or more rings of the Coxeter group {{CDD|label4|branch|3ab|branch|label4}}: {{CDD|label4|branch_10r|3ab|branch_10l|label4}}, {{CDD|label4|branch_01r|3ab|branch_10l|label4}}, {{CDD|label4|branch_11|3ab|branch|label4}}, {{CDD|label4|branch_11|3ab|branch_10l|label4}}, {{CDD|label4|branch_11|3ab|branch_11|label4}}.
= Rectified cubic-octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|Rectified cubic-octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Compact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | r{(4,3,4,3)} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|label4|branch_01r|3ab|branch_10l|label4}} |
bgcolor=#e7dcc3|Cells | r{4,3} 40px rr{3,4} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | 80px cuboid |
bgcolor=#e7dcc3|Coxeter group | |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The rectified cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cuboctahedron and rhombicuboctahedron cells, in a cuboid vertex figure. It has a Coxeter diagram {{CDD|label4|branch_01r|3ab|branch_10l|label4}}.
:Perspective view from center of rhombicuboctahedron
{{Clear}}
= Cyclotruncated cubic-octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|Cyclotruncated cubic-octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Compact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | ct{(4,3,4,3)} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|label4|branch_11|3ab|branch|label4}} |
bgcolor=#e7dcc3|Cells | t{4,3} 40px {3,4} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px square antiprism |
bgcolor=#e7dcc3|Coxeter group | |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The cyclotruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cube and octahedron cells, in a square antiprism vertex figure. It has a Coxeter diagram {{CDD|label4|branch_11|3ab|branch|label4}}.
:Perspective view from center of octahedron
It can be seen as somewhat analogous to the trioctagonal tiling, which has truncated square and triangle facets:
: 160px
{{Clear}}
= Cyclotruncated octahedral-cubic honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|Cyclotruncated octahedral-cubic honeycomb | |
bgcolor=#e7dcc3|Type | Compact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | ct{(3,4,3,4)} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|label4|branch_10r|3ab|branch_10l|label4}} {{CDD|node_1|splitplit1u|branch3u_11|3a3buc-cross|branch3u_11|splitplit2u|node_1}} ↔ {{CDD|branchu_11|3ab|branch_11|split2-44|node|labelh}} ↔ {{CDD|branch_11|4a4b|branch|labels |
|-
|bgcolor=#e7dcc3|Cells||{4,3} 40px
t{3,4} 40px
|-
|bgcolor=#e7dcc3|Faces||square {4}
hexagon {6}
|-
|bgcolor=#e7dcc3|Vertex figure||80px
triangular antiprism
|-
|bgcolor=#e7dcc3|Coxeter group||
|-
|bgcolor=#e7dcc3|Properties||Vertex-transitive, edge-transitive
|}
The cyclotruncated octahedral-cubic honeycomb is a compact uniform honeycomb, constructed from cube and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram {{CDD|label4|branch_10r|3ab|branch_10l|label4}}.
:Perspective view from center of cube
It contains an H2 subgroup tetrahexagonal tiling alternating square and hexagonal faces, with Coxeter diagram {{CDD|branch_11|split2-44|node}} or half symmetry {{CDD|nodes_11|3a3b-cross|nodes_11}}:
== Symmetry==
class=wikitable width=360 align=right
|+ Fundamental domains |
valign=top
|120px |120px |120px |
A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,4,3*)], {{CDD|branch_11|4a4b|branch|labels}}, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram {{CDD|node_1|splitplit1u|branch3u_11|3a3buc-cross|branch3u_11|splitplit2u|node_1}}. This lower symmetry can be extended by restoring one mirror as {{CDD|branchu_11|3ab|branch_11|split2-44|node}}.
class=wikitable
|+ Cells |
{{CDD|nodes_11|2|node_1}} ↔ {{CDD|node_1|4|node_g|3sg|node_g}} 40px = 40px |colspan=2|{{CDD|nodes_11|split2|node_1}} ↔ {{CDD|node_h0|4|node_1|3|node_1}} |
{{Clear}}
= Truncated cubic-octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|Truncated cubic-octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Compact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t{(4,3,4,3)} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|label4|branch_11|3ab|branch_10l|label4}} |
bgcolor=#e7dcc3|Cells | t{3,4} 40px t{4,3} 40px rr{3,4} 40px tr{4,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px rectangular pyramid |
bgcolor=#e7dcc3|Coxeter group | [(4,3)[2]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The truncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated octahedron, truncated cube, rhombicuboctahedron, and truncated cuboctahedron cells, in a rectangular pyramid vertex figure. It has a Coxeter diagram {{CDD|label4|branch_11|3ab|branch_10l|label4}}.
:Perspective view from center of rhombicuboctahedron
{{Clear}}
= Omnitruncated cubic-octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|Omnitruncated cubic-octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Compact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | tr{(4,3,4,3)} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|label4|branch_11|3ab|branch_11|label4}} |
bgcolor=#e7dcc3|Cells | tr{3,4} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px Rhombic disphenoid |
bgcolor=#e7dcc3|Coxeter group | [2[(4,3)[2]]] or [(2,2)+[(4,3)[2]]], {{CDD|label4|branch_c1|3ab|branch_c1|label4}} |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive, cell-transitive |
The omnitruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cuboctahedron cells, in a rhombic disphenoid vertex figure. It has a Coxeter diagram {{CDD|label4|branch_11|3ab|branch_11|label4}} with [2,2]+ (order 4) extended symmetry in its rhombic disphenoid vertex figure.
:Perspective view from center of truncated cuboctahedron
{{Clear}}
See also
References
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
{{DEFAULTSORT:Order-4 Dodecahedral Honeycomb}}