cubical bipyramid

{{Short description|4-D object; direct sum of a cube and a segment}}

class="wikitable" align="right" style="margin-left:10px" width="250"
bgcolor=#e7dcc3 colspan=3|Cubic bipyramid
align=center colspan=3|240px
Orthographic projection
8 red vertices and 12 blue edges of central cube, with 2 yellow apex vertices.
bgcolor=#e7dcc3|Type

|Polyhedral bipyramid

bgcolor=#e7dcc3|Schläfli symbol

| {4,3} + { }
dt{2,3,4}

bgcolor=#e7dcc3|Coxeter-Dynkin

|{{CDD|node_f1|2x|node_f1|4|node|3|node}}

bgcolor=#e7dcc3|Cells

|12 {4}∨{ } 30px (2×6)

bgcolor=#e7dcc3|Faces

|30 triangles (2×12+6)

bgcolor=#e7dcc3|Edges

|28 (2×8+12)

bgcolor=#e7dcc3|Vertices

|10 (2+8)

bgcolor=#e7dcc3|Dual

|Octahedral prism

bgcolor=#e7dcc3|Symmetry group

|[2,4,3], order 96

bgcolor=#e7dcc3|Properties

|convex, regular-faced,CRF polytope, Hanner polytope

In 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, {4,3} + { }. Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base.{{cite web | url=https://bendwavy.org/klitzing/incmats/cubdipy.htm | title=Cute }}

It is the dual of a octahedral prism.

Being convex and regular-faced, it is a CRF polytope.

Coordinates

It is a Hanner polytope with coordinates:{{cite web | url=https://bendwavy.org/klitzing/explain/hanner.htm | title=Hanner polytopes }}

  • [2] (0, 0, 0; ±1)
  • [8] (±1, ±1, ±1; 0)

See also

References

{{reflist}}