cubical bipyramid
{{Short description|4-D object; direct sum of a cube and a segment}}
class="wikitable" align="right" style="margin-left:10px" width="250" |
bgcolor=#e7dcc3 colspan=3|Cubic bipyramid |
---|
align=center colspan=3|240px Orthographic projection 8 red vertices and 12 blue edges of central cube, with 2 yellow apex vertices. |
bgcolor=#e7dcc3|Type |
bgcolor=#e7dcc3|Schläfli symbol
| {4,3} + { } |
bgcolor=#e7dcc3|Coxeter-Dynkin
|{{CDD|node_f1|2x|node_f1|4|node|3|node}} |
bgcolor=#e7dcc3|Cells |
bgcolor=#e7dcc3|Faces
|30 triangles (2×12+6) |
bgcolor=#e7dcc3|Edges
|28 (2×8+12) |
bgcolor=#e7dcc3|Vertices
|10 (2+8) |
bgcolor=#e7dcc3|Dual |
bgcolor=#e7dcc3|Symmetry group
|[2,4,3], order 96 |
bgcolor=#e7dcc3|Properties
|convex, regular-faced,CRF polytope, Hanner polytope |
In 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, {4,3} + { }. Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base.{{cite web | url=https://bendwavy.org/klitzing/incmats/cubdipy.htm | title=Cute }}
It is the dual of a octahedral prism.
Being convex and regular-faced, it is a CRF polytope.
Coordinates
It is a Hanner polytope with coordinates:{{cite web | url=https://bendwavy.org/klitzing/explain/hanner.htm | title=Hanner polytopes }}
- [2] (0, 0, 0; ±1)
- [8] (±1, ±1, ±1; 0)
See also
References
{{reflist}}
External links
- [https://polytope.miraheze.org/wiki/Cubic_tegum Cubic tegum]
{{Polychora-stub}}