dilogarithm
{{Short description|Special case of the polylogarithm}}
{{redirect|Li2|the molecule with formula Li2|dilithium}}
{{See also|polylogarithm#Dilogarithm}}
In mathematics, the dilogarithm (or Spence's function), denoted as {{math|Li2(z)}}, is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:
:
and its reflection.
For {{math|{{abs|z}} ≤ 1}}, an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):
:
Alternatively, the dilogarithm function is sometimes defined as
:
In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio {{mvar|z}} has hyperbolic volume
:
The function {{math|D(z)}} is sometimes called the Bloch-Wigner function.Zagier p. 10 Lobachevsky's function and Clausen's function are closely related functions.
William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.{{Cite web| url=https://mathshistory.st-andrews.ac.uk/Biographies/Spence/|title = William Spence - Biography}} He was at school with John Galt,{{Cite web|url=http://www.biographi.ca/009004-119.01-e.php?BioId=37522|title = Biography – GALT, JOHN – Volume VII (1836-1850) – Dictionary of Canadian Biography}} who later wrote a biographical essay on Spence.
Analytic structure
Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at , where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis . However, the function is continuous at the branch point and takes on the value .
Identities
:{{MathWorld|title=Dilogarithm|urlname=Dilogarithm}}
: The reflection formula.
:.{{Cite web |last=Weisstein |first=Eric W. |title=Rogers L-Function |url=https://mathworld.wolfram.com/ |access-date=2024-08-01 |website=mathworld.wolfram.com |language=en}}{{Cite journal |last=Rogers |first=L. J. |date=1907 |title=On the Representation of Certain Asymptotic Series as Convergent Continued Fractions |url=http://doi.wiley.com/10.1112/plms/s2-4.1.72 |journal=Proceedings of the London Mathematical Society |language=en |volume=s2-4 |issue=1 |pages=72–89 |doi=10.1112/plms/s2-4.1.72}} Abel's functional equation or five-term relation where is the Rogers L-function (an analogous relation is satisfied also by the quantum dilogarithm)
Particular value identities
Special values
:
: Its slope = 1.
:
: where is the Riemann zeta function.
:
:
\operatorname{Li}_2\left(-\frac{\sqrt5-1}{2}\right)
&=-\frac{{\pi}^2}{15}+\frac{1}{2}\left(\ln\frac{\sqrt5+1}{2}\right)^2 \\
&=-\frac{{\pi}^2}{15}+\frac{1}{2}\operatorname{arcsch}^2 2.
\end{align}
:
\operatorname{Li}_2\left(-\frac{\sqrt5+1}{2}\right)
&=-\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5+1}{2} \\
&=-\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2.
\end{align}
:
\operatorname{Li}_2\left(\frac{3-\sqrt5}{2}\right)
&=\frac{{\pi}^2}{15}-\ln^2 \frac{\sqrt5+1}{2} \\
&=\frac{{\pi}^2}{15}-\operatorname{arcsch}^2 2.
\end{align}
:
\operatorname{Li}_2\left(\frac{\sqrt5-1}{2}\right)
&=\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5+1}{2} \\
&=\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2.
\end{align}
In particle physics
Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:
:
\operatorname{\Phi}(x) = -\int_0^x \frac{\ln|1-u|}{u} \, du =
\begin{cases}
\operatorname{Li}_2(x), & x \leq 1; \\ \frac{\pi^2}{3} - \frac{1}{2}(\ln x)^2 - \operatorname{Li}_2(\frac{1}{x}), & x > 1.
\end{cases}
See also
Notes
{{Reflist}}
References
- {{Cite book | last1=Lewin | first1=L. | title=Dilogarithms and associated functions | publisher=Macdonald | location=London | others=Foreword by J. C. P. Miller | mr=0105524 | year=1958}}
- {{cite journal|first1=Robert
|last1=Morris
|journal=Math. Comp.
|year=1979
|title=The dilogarithm function of a real argument
|pages=778–787
|volume=33
|number=146
|doi=10.1090/S0025-5718-1979-0521291-X
|mr=521291
|doi-access=free
}}
- {{cite journal
|first=J. H.
|last1=Loxton
|title=Special values of the dilogarithm
|journal=Acta Arith.
|year=1984
|volume=18
|number=2
|pages=155–166
|url=http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav43i2p155bwm?q=bwmeta1.element.bwnjournal-number-aa-1983-1984-43-2&qt=CHILDREN-STATELESS
|mr=0736728
|doi=10.4064/aa-43-2-155-166
|doi-access=free
}}
- {{cite journal
|first=Anatol N.
|last=Kirillov
|title=Dilogarithm identities
|arxiv=hep-th/9408113
|year=1995
|doi=10.1143/PTPS.118.61
|volume=118
|journal=Progress of Theoretical Physics Supplement
|pages=61–142
|bibcode=1995PThPS.118...61K
|s2cid=119177149
}}
- {{cite journal
|first1=Carlos
|last1=Osacar
|first2=Jesus
|last2=Palacian
|first3=Manuel
|last3=Palacios
|title=Numerical evaluation of the dilogarithm of complex argument
|year=1995
|volume=62
|number=1
|pages=93–98
|journal=Celest. Mech. Dyn. Astron.
|doi=10.1007/BF00692071
|bibcode=1995CeMDA..62...93O
|s2cid=121304484
}}
- {{ cite book
|first=Don |last=Zagier
|year=2007
|chapter=The Dilogarithm Function
|title=Frontiers in Number Theory, Physics, and Geometry II
|editor1=Pierre Cartier |editor2=Pierre Moussa |editor3=Bernard Julia |editor4=Pierre Vanhove
|pages=3–65
|url=http://maths.dur.ac.uk/~dma0hg/dilog.pdf
|doi=10.1007/978-3-540-30308-4_1
|isbn=978-3-540-30308-4
}}
Further reading
- {{cite book | last=Bloch | first=Spencer J. | authorlink=Spencer Bloch | title=Higher regulators, algebraic K-theory, and zeta functions of elliptic curves | series=CRM Monograph Series | volume=11 | location=Providence, RI | publisher=American Mathematical Society | year=2000 | isbn=0-8218-2114-8 | zbl=0958.19001 }}
External links
- [http://dlmf.nist.gov/25.12 NIST Digital Library of Mathematical Functions: Dilogarithm]
- {{MathWorld|title=Dilogarithm|urlname=Dilogarithm}}