dilogarithm

{{Short description|Special case of the polylogarithm}}

{{redirect|Li2|the molecule with formula Li2|dilithium}}

{{See also|polylogarithm#Dilogarithm}}

Image:Mplwp dilogarithm.svg

In mathematics, the dilogarithm (or Spence's function), denoted as {{math|Li2(z)}}, is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:

:\operatorname{Li}_2(z) = -\int_0^z{\ln(1-u) \over u}\, du \text{, }z \in \Complex

and its reflection.

For {{math|{{abs|z}} ≤ 1}}, an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):

:\operatorname{Li}_2(z) = \sum_{k=1}^\infty {z^k \over k^2}.

Alternatively, the dilogarithm function is sometimes defined as

:\int_{1}^{v} \frac{ \ln t }{ 1 -t } dt = \operatorname{Li}_2(1-v).

In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio {{mvar|z}} has hyperbolic volume

:D(z) = \operatorname{Im} \operatorname{Li}_2(z) + \arg(1-z) \log|z|.

The function {{math|D(z)}} is sometimes called the Bloch-Wigner function.Zagier p. 10 Lobachevsky's function and Clausen's function are closely related functions.

William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.{{Cite web| url=https://mathshistory.st-andrews.ac.uk/Biographies/Spence/|title = William Spence - Biography}} He was at school with John Galt,{{Cite web|url=http://www.biographi.ca/009004-119.01-e.php?BioId=37522|title = Biography – GALT, JOHN – Volume VII (1836-1850) – Dictionary of Canadian Biography}} who later wrote a biographical essay on Spence.

Analytic structure

Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at z = 1, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis (1, \infty). However, the function is continuous at the branch point and takes on the value \operatorname{Li}_2(1) = \pi^2/6.

Identities

:\operatorname{Li}_2(z)+\operatorname{Li}_2(-z)=\frac{1}{2}\operatorname{Li}_2(z^2).Zagier

:\operatorname{Li}_2(1-z)+\operatorname{Li}_2\left(1-\frac{1}{z}\right)=-\frac{(\ln z)^2}{2}.{{MathWorld|title=Dilogarithm|urlname=Dilogarithm}}

:\operatorname{Li}_2(z)+\operatorname{Li}_2(1-z)=\frac{{\pi}^2}{6}-\ln z \cdot\ln(1-z). The reflection formula.

:\operatorname{Li}_2(-z)-\operatorname{Li}_2(1-z)+\frac{1}{2}\operatorname{Li}_2(1-z^2)=-\frac{{\pi}^2}{12}-\ln z \cdot \ln(z+1).

:\operatorname{Li}_2(z) +\operatorname{Li}_2\left(\frac{1}{z}\right) = - \frac{\pi^2}{6} - \frac{(\ln(-z))^2}{2}.

:\operatorname{L}(x)+\operatorname{L}(y)=\operatorname{L}(xy)+\operatorname{L}(\frac{x(1-y)}{1-xy})+\operatorname{L}(\frac{y(1-x)}{1-xy}).{{Cite web |last=Weisstein |first=Eric W. |title=Rogers L-Function |url=https://mathworld.wolfram.com/ |access-date=2024-08-01 |website=mathworld.wolfram.com |language=en}}{{Cite journal |last=Rogers |first=L. J. |date=1907 |title=On the Representation of Certain Asymptotic Series as Convergent Continued Fractions |url=http://doi.wiley.com/10.1112/plms/s2-4.1.72 |journal=Proceedings of the London Mathematical Society |language=en |volume=s2-4 |issue=1 |pages=72–89 |doi=10.1112/plms/s2-4.1.72}} Abel's functional equation or five-term relation where \operatorname{L}(z)=\frac{\pi}{6}[\operatorname{Li}_2(z)+\frac12\ln(z)\ln(1-z)] is the Rogers L-function (an analogous relation is satisfied also by the quantum dilogarithm)

Particular value identities

:\operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}-\frac{(\ln 3)^2}{6}.

:\operatorname{Li}_2\left(-\frac{1}{3}\right)-\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\frac{(\ln 3)^2}{6}.

:\operatorname{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\ln2\cdot \ln3-\frac{(\ln 2)^2}{2}-\frac{(\ln 3)^2}{3}.

:\operatorname{Li}_2\left(\frac{1}{4}\right)+\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}+2\ln2\cdot\ln3-2(\ln 2)^2-\frac{2}{3}(\ln 3)^2.

:\operatorname{Li}_2\left(-\frac{1}{8}\right)+\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{1}{2}\left(\ln{\frac{9}{8}}\right)^2.

:36\operatorname{Li}_2\left(\frac{1}{2}\right)-36\operatorname{Li}_2\left(\frac{1}{4}\right)-12\operatorname{Li}_2\left(\frac{1}{8}\right)+6\operatorname{Li}_2\left(\frac{1}{64}\right)={\pi}^2.

Special values

:\operatorname{Li}_2(-1)=-\frac{{\pi}^2}{12}.

:\operatorname{Li}_2(0)=0. Its slope = 1.

:\operatorname{Li}_2\left(\frac{1}{2}\right)=\frac{{\pi}^2}{12}-\frac{(\ln 2)^2}{2}.

:\operatorname{Li}_2(1) = \zeta(2) = \frac{{\pi}^2}{6}, where \zeta(s) is the Riemann zeta function.

:\operatorname{Li}_2(2)=\frac{{\pi}^2}{4}-i\pi\ln2.

:\begin{align}

\operatorname{Li}_2\left(-\frac{\sqrt5-1}{2}\right)

&=-\frac{{\pi}^2}{15}+\frac{1}{2}\left(\ln\frac{\sqrt5+1}{2}\right)^2 \\

&=-\frac{{\pi}^2}{15}+\frac{1}{2}\operatorname{arcsch}^2 2.

\end{align}

:\begin{align}

\operatorname{Li}_2\left(-\frac{\sqrt5+1}{2}\right)

&=-\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5+1}{2} \\

&=-\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2.

\end{align}

:\begin{align}

\operatorname{Li}_2\left(\frac{3-\sqrt5}{2}\right)

&=\frac{{\pi}^2}{15}-\ln^2 \frac{\sqrt5+1}{2} \\

&=\frac{{\pi}^2}{15}-\operatorname{arcsch}^2 2.

\end{align}

:\begin{align}

\operatorname{Li}_2\left(\frac{\sqrt5-1}{2}\right)

&=\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5+1}{2} \\

&=\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2.

\end{align}

In particle physics

Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:

:

\operatorname{\Phi}(x) = -\int_0^x \frac{\ln|1-u|}{u} \, du =

\begin{cases}

\operatorname{Li}_2(x), & x \leq 1; \\ \frac{\pi^2}{3} - \frac{1}{2}(\ln x)^2 - \operatorname{Li}_2(\frac{1}{x}), & x > 1.

\end{cases}

See also

Notes

{{Reflist}}

References

  • {{Cite book | last1=Lewin | first1=L. | title=Dilogarithms and associated functions | publisher=Macdonald | location=London | others=Foreword by J. C. P. Miller | mr=0105524 | year=1958}}
  • {{cite journal|first1=Robert

|last1=Morris

|journal=Math. Comp.

|year=1979

|title=The dilogarithm function of a real argument

|pages=778–787

|volume=33

|number=146

|doi=10.1090/S0025-5718-1979-0521291-X

|mr=521291

|doi-access=free

}}

  • {{cite journal

|first=J. H.

|last1=Loxton

|title=Special values of the dilogarithm

|journal=Acta Arith.

|year=1984

|volume=18

|number=2

|pages=155–166

|url=http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav43i2p155bwm?q=bwmeta1.element.bwnjournal-number-aa-1983-1984-43-2&qt=CHILDREN-STATELESS

|mr=0736728

|doi=10.4064/aa-43-2-155-166

|doi-access=free

}}

  • {{cite journal

|first=Anatol N.

|last=Kirillov

|title=Dilogarithm identities

|arxiv=hep-th/9408113

|year=1995

|doi=10.1143/PTPS.118.61

|volume=118

|journal=Progress of Theoretical Physics Supplement

|pages=61–142

|bibcode=1995PThPS.118...61K

|s2cid=119177149

}}

  • {{cite journal

|first1=Carlos

|last1=Osacar

|first2=Jesus

|last2=Palacian

|first3=Manuel

|last3=Palacios

|title=Numerical evaluation of the dilogarithm of complex argument

|year=1995

|volume=62

|number=1

|pages=93–98

|journal=Celest. Mech. Dyn. Astron.

|doi=10.1007/BF00692071

|bibcode=1995CeMDA..62...93O

|s2cid=121304484

}}

  • {{ cite book

|first=Don |last=Zagier

|year=2007

|chapter=The Dilogarithm Function

|title=Frontiers in Number Theory, Physics, and Geometry II

|editor1=Pierre Cartier |editor2=Pierre Moussa |editor3=Bernard Julia |editor4=Pierre Vanhove

|pages=3–65

|url=http://maths.dur.ac.uk/~dma0hg/dilog.pdf

|doi=10.1007/978-3-540-30308-4_1

|isbn=978-3-540-30308-4

}}

Further reading

  • {{cite book | last=Bloch | first=Spencer J. | authorlink=Spencer Bloch | title=Higher regulators, algebraic K-theory, and zeta functions of elliptic curves | series=CRM Monograph Series | volume=11 | location=Providence, RI | publisher=American Mathematical Society | year=2000 | isbn=0-8218-2114-8 | zbl=0958.19001 }}