quantum dilogarithm

In mathematics, the quantum dilogarithm is a special function defined by the formula

:

\phi(x)\equiv(x;q)_\infty=\prod_{n=0}^\infty (1-xq^n),\quad |q|<1

It is the same as the q-exponential function e_q(x).

Let u,v be "q-commuting variables", that is elements of a suitable noncommutative algebra satisfying Weyl's relation uv=qvu. Then, the quantum dilogarithm satisfies Schützenberger's identity

:\phi(u) \phi(v)=\phi(u + v),

Faddeev-Volkov's identity

:\phi(v) \phi(u)=\phi(u +v -vu),

and Faddeev-Kashaev's identity

:\phi(v)\phi(u)=\phi(u)\phi(-vu)\phi(v).

The latter is known to be a quantum generalization of Rogers' five term dilogarithm identity.

Faddeev's quantum dilogarithm \Phi_b(w) is defined by the following formula:

: \Phi_b(z)=\exp

\left(

\frac{1}{4}\int_C

\frac{e^{-2i zw }}

{\sinh (wb) \sinh (w/b) }

\frac{dw}{w}

\right),

where the contour of integration C goes along the real axis outside a small neighborhood of the origin and deviates into the upper half-plane near the origin. The same function can be described by the integral formula of Woronowicz:

:

\Phi_b(x)=\exp\left(\frac{i}{2\pi}\int_{\mathbb R}\frac{\log(1+e^{tb^2+2\pi b x})}{1+e^{t}}\,dt\right).

Ludvig Faddeev discovered the quantum pentagon identity:

: \Phi_b(\hat p)\Phi_b(\hat q)

=

\Phi_b(\hat q)

\Phi_b(\hat p+ \hat q)

\Phi_b(\hat p),

where \hat p and \hat q are self-adjoint (normalized) quantum mechanical momentum and position operators satisfying Heisenberg's commutation relation

:[\hat p,\hat q]=\frac1{2\pi i}

and the inversion relation

: \Phi_b(x)\Phi_b(-x)=\Phi_b(0)^2 e^{\pi ix^2},\quad \Phi_b(0)=e^{\frac{\pi i}{24}\left(b^2+b^{-2}\right)}.

The quantum dilogarithm finds applications in mathematical physics, quantum topology, cluster algebra theory.

The precise relationship between the q-exponential and \Phi_b is expressed by the equality

:\Phi_b(z)=\frac{E_{e^{2\pi ib^2}}(-e^{\pi ib^2+2\pi zb})}{E_{e^{-2\pi i/b^2}}(-e^{-\pi i/b^2+2\pi z/b})},

valid for \operatorname{Im} b^2>0.

References

  • {{cite arXiv

| last = Faddeev | first = L. D.

| year = 1994

| title = Current-Like Variables in Massive and Massless Integrable Models

| eprint = hep-th/9408041

}}

  • {{cite journal

| last = Faddeev | first = L. D.

| year = 1995

| journal = Letters in Mathematical Physics

| title = Discrete Heisenberg-Weyl group and modular group

| volume = 34 | issue = 3 | pages = 249–254

| arxiv = hep-th/9504111

| bibcode = 1995LMaPh..34..249F

| doi = 10.1007/BF01872779

| mr = 1345554

| s2cid = 119435070

}}

  • {{cite journal

| last1=Faddeev | first1=L. D.

| last2=Kashaev | first2=R. M.

| year=1994

| title=Quantum dilogarithm

| journal=Modern Physics Letters A

| volume=9 | issue=5 | pages=427–434

| arxiv= hep-th/9310070

| bibcode= 1994MPLA....9..427F

| doi=10.1142/S0217732394000447

| mr=1264393

| s2cid=6172445

}}

  • {{cite journal

| last1=Faddeev | first1=L. D.

| last2=Volkov| first2= A. Yu.

| year= 1993

| title= Abelian current algebra and the Virasoro algebra on the lattice

| journal= Physics Letters B

| volume= 315 | issue=3–4 | pages=311–318

| arxiv= hep-th/9307048

| bibcode= 1993PhLB..315..311F

| doi= 10.1016/0370-2693(93)91618-W

| s2cid=10294434

}}

  • {{cite journal

| last1=Kirillov | first1=A. N.

| year=1995

| title=Dilogarithm identities

| journal=Progress of Theoretical Physics Supplement

| volume=118 | pages=61–142

| arxiv=hep-th/9408113

| bibcode= 1995PThPS.118...61K

| doi=10.1143/PTPS.118.61

| mr=1356515

| s2cid=119177149

}}

  • {{cite journal

| last = Schützenberger | first = M. P.

| year = 1953

| title = Une interprétation de certaines solutions de l'équation fonctionnelle: F (x + y) = F (x)F (y)

| journal = Comptes Rendus de l'Académie des Sciences de Paris

| volume = 236 | pages = 352–353

}}

  • {{cite journal

| last = Woronowicz | first = S. L.

| year = 2000

| title = Quantum exponential function

| journal = Reviews in Mathematical Physics

| volume = 12 |issue= 6 | pages = 873–920

| doi = 10.1142/S0129055X00000344

| mr = 1770545

|bibcode = 2000RvMaP..12..873W }}