quantum dilogarithm
In mathematics, the quantum dilogarithm is a special function defined by the formula
:
\phi(x)\equiv(x;q)_\infty=\prod_{n=0}^\infty (1-xq^n),\quad |q|<1
It is the same as the q-exponential function .
Let be "q-commuting variables", that is elements of a suitable noncommutative algebra satisfying Weyl's relation . Then, the quantum dilogarithm satisfies Schützenberger's identity
:
Faddeev-Volkov's identity
:
and Faddeev-Kashaev's identity
:
The latter is known to be a quantum generalization of Rogers' five term dilogarithm identity.
Faddeev's quantum dilogarithm is defined by the following formula:
:
\left(
\frac{1}{4}\int_C
\frac{e^{-2i zw }}
{\sinh (wb) \sinh (w/b) }
\frac{dw}{w}
\right),
where the contour of integration goes along the real axis outside a small neighborhood of the origin and deviates into the upper half-plane near the origin. The same function can be described by the integral formula of Woronowicz:
:
\Phi_b(x)=\exp\left(\frac{i}{2\pi}\int_{\mathbb R}\frac{\log(1+e^{tb^2+2\pi b x})}{1+e^{t}}\,dt\right).
Ludvig Faddeev discovered the quantum pentagon identity:
:
=
\Phi_b(\hat q)
\Phi_b(\hat p+ \hat q)
\Phi_b(\hat p),
where and are self-adjoint (normalized) quantum mechanical momentum and position operators satisfying Heisenberg's commutation relation
:
and the inversion relation
:
The quantum dilogarithm finds applications in mathematical physics, quantum topology, cluster algebra theory.
The precise relationship between the q-exponential and is expressed by the equality
:
valid for .
References
- {{cite arXiv
| last = Faddeev | first = L. D.
| year = 1994
| title = Current-Like Variables in Massive and Massless Integrable Models
| eprint = hep-th/9408041
}}
- {{cite journal
| last = Faddeev | first = L. D.
| year = 1995
| journal = Letters in Mathematical Physics
| title = Discrete Heisenberg-Weyl group and modular group
| volume = 34 | issue = 3 | pages = 249–254
| arxiv = hep-th/9504111
| bibcode = 1995LMaPh..34..249F
| doi = 10.1007/BF01872779
| mr = 1345554
| s2cid = 119435070
}}
- {{cite journal
| last1=Faddeev | first1=L. D.
| last2=Kashaev | first2=R. M.
| year=1994
| title=Quantum dilogarithm
| journal=Modern Physics Letters A
| volume=9 | issue=5 | pages=427–434
| arxiv= hep-th/9310070
| bibcode= 1994MPLA....9..427F
| doi=10.1142/S0217732394000447
| mr=1264393
| s2cid=6172445
}}
- {{cite journal
| last1=Faddeev | first1=L. D.
| last2=Volkov| first2= A. Yu.
| year= 1993
| title= Abelian current algebra and the Virasoro algebra on the lattice
| journal= Physics Letters B
| volume= 315 | issue=3–4 | pages=311–318
| arxiv= hep-th/9307048
| bibcode= 1993PhLB..315..311F
| doi= 10.1016/0370-2693(93)91618-W
| s2cid=10294434
}}
- {{cite journal
| last1=Kirillov | first1=A. N.
| year=1995
| title=Dilogarithm identities
| journal=Progress of Theoretical Physics Supplement
| volume=118 | pages=61–142
| arxiv=hep-th/9408113
| bibcode= 1995PThPS.118...61K
| doi=10.1143/PTPS.118.61
| mr=1356515
| s2cid=119177149
}}
- {{cite journal
| last = Schützenberger | first = M. P.
| year = 1953
| title = Une interprétation de certaines solutions de l'équation fonctionnelle: F (x + y) = F (x)F (y)
| journal = Comptes Rendus de l'Académie des Sciences de Paris
| volume = 236 | pages = 352–353
}}
- {{cite journal
| last = Woronowicz | first = S. L.
| year = 2000
| title = Quantum exponential function
| journal = Reviews in Mathematical Physics
| volume = 12 |issue= 6 | pages = 873–920
| doi = 10.1142/S0129055X00000344
| mr = 1770545
|bibcode = 2000RvMaP..12..873W }}
External links
- {{nlab|id=quantum+dilogarithm|title=quantum dilogarithm}}