divisor function

{{redirect|Robin's theorem|Robbins' theorem in graph theory|Robbins' theorem}}

{{short description|Arithmetic function related to the divisors of an integer}}

Image:Divisor.svg

Image:Sigma function.svg

Image:Divisor square.svg

Image:Divisor cube.svg

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.

Definition

The sum of positive divisors function σz(n), for a real or complex number z, is defined as the sum of the zth powers of the positive divisors of n. It can be expressed in sigma notation as

:\sigma_z(n)=\sum_{d\mid n} d^z\,\! ,

where {d\mid n} is shorthand for "d divides n".

The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ0(n), or the number-of-divisors function{{harvtxt|Long|1972|p=46}}{{harvtxt|Pettofrezzo|Byrkit|1970|p=63}} ({{OEIS2C|id=A000005}}). When z is 1, the function is called the sigma function or sum-of-divisors function,{{harvtxt|Pettofrezzo|Byrkit|1970|p=58}} and the subscript is often omitted, so σ(n) is the same as σ1(n) ({{OEIS2C|id=A000203}}).

The aliquot sum s(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself, {{OEIS2C|id=A001065}}), and equals σ1(n) − n; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.

Example

For example, σ0(12) is the number of the divisors of 12:

:

\begin{align}

\sigma_0(12) & = 1^0 + 2^0 + 3^0 + 4^0 + 6^0 + 12^0 \\

& = 1 + 1 + 1 + 1 + 1 + 1 = 6,

\end{align}

while σ1(12) is the sum of all the divisors:

:

\begin{align}

\sigma_1(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 + 12^1 \\

& = 1 + 2 + 3 + 4 + 6 + 12 = 28,

\end{align}

and the aliquot sum s(12) of proper divisors is:

:

\begin{align}

s(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 \\

& = 1 + 2 + 3 + 4 + 6 = 16.

\end{align}

σ−1(n) is sometimes called the abundancy index of n, and we have:

:

\begin{align}

\sigma_{-1}(12) & = 1^{-1} + 2^{-1} + 3^{-1} + 4^{-1} + 6^{-1} + 12^{-1} \\[6pt]

& = \tfrac11 + \tfrac12 + \tfrac13 + \tfrac14 + \tfrac16 + \tfrac1{12} \\[6pt]

& = \tfrac{12}{12} + \tfrac6{12} + \tfrac4{12} + \tfrac3{12} + \tfrac2{12} + \tfrac1{12} \\[6pt]

& = \tfrac{12 + 6 + 4 + 3 + 2 + 1}{12} = \tfrac{28}{12} = \tfrac73 = \tfrac{\sigma_1(12)}{12}

\end{align}

Table of values

The cases x = 2 to 5 are listed in {{OEIS2C|A001157}} through {{OEIS2C|A001160}}, x = 6 to 24 are listed in {{OEIS2C|A013954}} through {{OEIS2C|A013972}}.

class="wikitable" style="text-align:right; float:left"

! n !! prime factorization !! {{sigma}}0(n)!! {{sigma}}1(n)!! {{sigma}}2(n)!! {{sigma}}3(n)!! {{sigma}}4(n)

1style='text-align:center;'| 111111
style="background-color:#ddeeff;"

| 2

style='text-align:center;'| 2235917
style="background-color:#ddeeff;"

| 3

style='text-align:center;'| 324102882
4style='text-align:center;'| 22372173273
style="background-color:#ddeeff;"

| 5

style='text-align:center;'| 52626126626
6style='text-align:center;'| 2×3412502521394
style="background-color:#ddeeff;"

| 7

style='text-align:center;'| 728503442402
8style='text-align:center;'| 23415855854369
9style='text-align:center;'| 32313917576643
10style='text-align:center;'| 2×5418130113410642
style="background-color:#ddeeff;"

| 11

style='text-align:center;'| 11212122133214642
12style='text-align:center;'| 22×3628210204422386
style="background-color:#ddeeff;"

| 13

style='text-align:center;'| 13214170219828562
14style='text-align:center;'| 2×7424250309640834
15style='text-align:center;'| 3×5424260352851332
16style='text-align:center;'| 24531341468169905
style="background-color:#ddeeff;"

| 17

style='text-align:center;'| 17218290491483522
18style='text-align:center;'| 2×326394556813112931
style="background-color:#ddeeff;"

| 19

style='text-align:center;'| 192203626860130322
20style='text-align:center;'| 22×56425469198170898
21style='text-align:center;'| 3×74325009632196964
22style='text-align:center;'| 2×1143661011988248914
style="background-color:#ddeeff;"

| 23

style='text-align:center;'| 2322453012168279842
24style='text-align:center;'| 23×386085016380358258
25style='text-align:center;'| 5233165115751391251
26style='text-align:center;'| 2×1344285019782485554
27style='text-align:center;'| 3344082020440538084
28style='text-align:center;'| 22×7656105025112655746
style="background-color:#ddeeff;"

| 29

style='text-align:center;'| 2923084224390707282
30style='text-align:center;'| 2×3×5872130031752872644
style="background-color:#ddeeff;"

| 31

style='text-align:center;'| 3123296229792923522
32style='text-align:center;'| 256631365374491118481
33style='text-align:center;'| 3×114481220372961200644
34style='text-align:center;'| 2×174541450442261419874
35style='text-align:center;'| 5×74481300433441503652
36style='text-align:center;'| 22×329911911552611813539
style="background-color:#ddeeff;"

| 37

style='text-align:center;'| 372381370506541874162
38style='text-align:center;'| 2×194601810617402215474
39style='text-align:center;'| 3×134561700615442342084
40style='text-align:center;'| 23×58902210737102734994
style="background-color:#ddeeff;"

| 41

style='text-align:center;'| 412421682689222825762
42style='text-align:center;'| 2×3×78962500866883348388
style="background-color:#ddeeff;"

| 43

style='text-align:center;'| 432441850795083418802
44style='text-align:center;'| 22×116842562972363997266
45style='text-align:center;'| 32×56782366953824158518
46style='text-align:center;'| 2×2347226501095124757314
style="background-color:#ddeeff;"

| 47

style='text-align:center;'| 4724822101038244879682
48style='text-align:center;'| 24×31012434101310685732210
49style='text-align:center;'| 7235724511179935767203
50style='text-align:center;'| 2×5269332551417596651267

{{clear}}

Properties

=Formulas at prime powers=

For a prime number p,

:\begin{align}

\sigma_0(p) & = 2 \\

\sigma_0(p^n) & = n+1 \\

\sigma_1(p) & = p+1

\end{align}

because by definition, the factors of a prime number are 1 and itself. Also, where pn# denotes the primorial,

: \sigma_0(p_n\#) = 2^n

since n prime factors allow a sequence of binary selection (p_{i} or 1) from n terms for each proper divisor formed. However, these are not in general the smallest numbers whose number of divisors is a power of two; instead, the smallest such number may be obtained by multiplying together the first n Fermi–Dirac primes, prime powers whose exponent is a power of two.{{citation

| last = Ramanujan | first = S. | author-link = Srinivasa Ramanujan

| doi = 10.1112/plms/s2_14.1.347

| issue = 1

| journal = Proceedings of the London Mathematical Society

| pages = 347–409

| title = Highly Composite Numbers

| volume = s2-14

| year = 1915| url = https://zenodo.org/record/1433496 }}; see section 47, pp. 405–406, reproduced in Collected Papers of Srinivasa Ramanujan, Cambridge Univ. Press, 2015, [https://books.google.com/books?id=h1G2CgAAQBAJ&pg=PA124 pp. 124–125]

Clearly, 1 < \sigma_0(n) < n for all n > 2, and \sigma_x(n) > n for all n > 1, x > 0 .

The divisor function is multiplicative (since each divisor c of the product mn with \gcd(m, n) = 1 distinctively correspond to a divisor a of m and a divisor b of n), but not completely multiplicative:

:\gcd(a, b)=1 \Longrightarrow \sigma_x(ab)=\sigma_x(a)\sigma_x(b).

The consequence of this is that, if we write

:n = \prod_{i=1}^r p_i^{a_i}

where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have: {{sfnp|Hardy|Wright|2008|pp=310 f|loc=§16.7}}

:\sigma_x(n) = \prod_{i=1}^r \sum_{j=0}^{a_i} p_i^{j x} = \prod_{i=1}^r \left (1 + p_i^x + p_i^{2x} + \cdots + p_i^{a_i x} \right ).

which, when x ≠ 0, is equivalent to the useful formula: {{sfnp|Hardy|Wright|2008|pp=310 f|loc=§16.7}}

:\sigma_x(n) = \prod_{i=1}^{r} \frac{p_{i}^{(a_{i}+1)x}-1}{p_{i}^x-1}.

When x = 0, \sigma_0(n) is: {{sfnp|Hardy|Wright|2008|pp=310 f|loc=§16.7}}

:\sigma_0(n)=\prod_{i=1}^r (a_i+1).

This result can be directly deduced from the fact that all divisors of n are uniquely determined by the distinct tuples (x_1, x_2, ..., x_i, ..., x_r) of integers with 0 \le x_i \le a_i (i.e. a_i+1 independent choices for each x_i).

For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate \sigma_0(24) as so:

: \sigma_0(24) = \prod_{i=1}^{2} (a_i+1) = (3 + 1)(1 + 1) = 4 \cdot 2 = 8.

The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.

=Other properties and identities=

Euler proved the remarkable recurrence:{{Cite arXiv |eprint = math/0411587|last1 = Euler|first1 = Leonhard|title = An observation on the sums of divisors|last2 = Bell|first2 = Jordan|year = 2004}}https://scholarlycommons.pacific.edu/euler-works/175/, Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurshttps://scholarlycommons.pacific.edu/euler-works/542/, De mirabilis proprietatibus numerorum pentagonalium

:\begin{align}

\sigma_1(n) &= \sigma_1(n-1)+\sigma_1(n-2)-\sigma_1(n-5)-\sigma_1(n-7)+\sigma_1(n-12)+\sigma_1(n-15)+ \cdots \\[12mu]

&= \sum_{i\in\N} (-1)^{i+1}\left( \sigma_1 \left( n-\frac{1}{2} \left( 3i^2-i \right) \right) + \sigma_1 \left( n-\frac{1}{2} \left( 3i^2+i \right) \right) \right),

\end{align}

where \sigma_1(0)=n if it occurs and \sigma_1(x)=0 for x < 0, and \tfrac{1}{2} \left( 3i^2 \mp i \right) are consecutive pairs of generalized pentagonal numbers ({{OEIS2C|A001318}}, starting at offset 1). Indeed, Euler proved this by logarithmic differentiation of the identity in his pentagonal number theorem.

For a non-square integer, n, every divisor, d, of n is paired with divisor n/d of n and \sigma_{0}(n) is even; for a square integer, one divisor (namely \sqrt n) is not paired with a distinct divisor and \sigma_{0}(n) is odd. Similarly, the number \sigma_{1}(n) is odd if and only if n is a square or twice a square.{{sfnp|Gioia|Vaidya|1967}}

We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers, which are the n such that s(n) = n. If s(n) > n, then n is an abundant number, and if s(n) < n, then n is a deficient number.

If {{mvar|n}} is a power of 2, n = 2^k, then \sigma(n) = 2 \cdot 2^k - 1 = 2n - 1 and s(n) = n - 1, which makes n almost-perfect.

As an example, for two primes p,q:p, let

:n = p\,q.

Then

:\sigma(n) = (p+1)(q+1) = n + 1 + (p+q),

:\varphi(n) = (p-1)(q-1) = n + 1 - (p+q),

and

:n + 1 = (\sigma(n) + \varphi(n))/2,

:p + q = (\sigma(n) - \varphi(n))/2,

where \varphi(n) is Euler's totient function.

Then, the roots of

:(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(\sigma(n) - \varphi(n))/2]x + [(\sigma(n) + \varphi(n))/2 - 1] = 0

express p and q in terms of σ(n) and φ(n) only, requiring no knowledge of n or p+q, as

:p = (\sigma(n) - \varphi(n))/4 - \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]},

:q = (\sigma(n) - \varphi(n))/4 + \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}.

Also, knowing {{mvar|n}} and either \sigma(n) or \varphi(n), or, alternatively, p+q and either \sigma(n) or \varphi(n) allows an easy recovery of p and q.

In 1984, Roger Heath-Brown proved that the equality

:\sigma_0(n) = \sigma_0(n + 1)

is true for infinitely many values of {{mvar|n}}, see {{OEIS2C|A005237}}.

= Dirichlet convolutions =

{{Main article|Dirichlet convolution}}

By definition:\sigma = \operatorname{Id} * \mathbf 1By Möbius inversion:\operatorname{Id} = \sigma * \mu

Series relations

Two Dirichlet series involving the divisor function are: {{sfnp|Hardy|Wright|2008|pp=326-328|loc=§17.5}}

:\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} = \zeta(s) \zeta(s-a)\quad\text{for}\quad s>1,s>a+1,

where \zeta is the Riemann zeta function. The series for d(n) = σ0(n) gives: {{sfnp|Hardy|Wright|2008|pp=326-328|loc=§17.5}}

: \sum_{n=1}^\infty \frac{d(n)}{n^s} = \zeta^2(s)\quad\text{for}\quad s>1,

and a Ramanujan identity{{sfnp|Hardy|Wright|2008|pp=334-337|loc=§17.8}}

:\sum_{n=1}^\infty \frac{\sigma_a(n)\sigma_b(n)}{n^s} = \frac{\zeta(s) \zeta(s-a) \zeta(s-b) \zeta(s-a-b)}{\zeta(2s-a-b)},

which is a special case of the Rankin–Selberg convolution.

A Lambert series involving the divisor function is: {{sfnp|Hardy|Wright|2008|pp=338-341|loc=§17.10}}

:\sum_{n=1}^\infty q^n \sigma_a(n) = \sum_{n=1}^\infty \sum_{j=1}^\infty n^a q^{j\,n} = \sum_{n=1}^\infty \frac{n^a q^n}{1-q^n} = \sum_{n=1}^\infty \operatorname{Li}_{-a}(q^n)

for arbitrary complex |q| ≤ 1 and a (\operatorname{Li} is the polylogarithm). This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.

For k>0, there is an explicit series representation with Ramanujan sums c_m(n) as :{{cite book |author=E. Krätzel |title=Zahlentheorie |publisher=VEB Deutscher Verlag der Wissenschaften |place =Berlin |year=1981 |pages=130}} (German)

:\sigma_k(n) = \zeta(k+1)n^k\sum_{m=1}^\infty \frac {c_m(n)}{m^{k+1}}.

The computation of the first terms of c_m(n) shows its oscillations around the "average value" \zeta(k+1)n^k:

:\sigma_k(n) = \zeta(k+1)n^k \left[ 1 + \frac{(-1)^n}{2^{k+1}} + \frac{2\cos\frac {2\pi n}{3}}{3^{k+1}} + \frac{2\cos\frac {\pi n}{2}}{4^{k+1}} + \cdots\right]

Growth rate<!--linked from 'Thomas Hakon Grönwall'-->

In little-o notation, the divisor function satisfies the inequality:{{sfnp|Apostol|1976|p=296}}{{sfnp|Hardy|Wright|2008|pp=342-347|loc=§18.1}}

:\mbox{for all }\varepsilon>0,\quad d(n)=o(n^\varepsilon).

More precisely, Severin Wigert showed that:{{sfnp|Hardy|Wright|2008|pp=342-347|loc=§18.1}}

:\limsup_{n\to\infty}\frac{\log d(n)}{\log n/\log\log n}=\log2.

On the other hand, since there are infinitely many prime numbers,{{sfnp|Hardy|Wright|2008|pp=342-347|loc=§18.1}}

:\liminf_{n\to\infty} d(n)=2.

In Big-O notation, Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality:{{sfnp|Apostol|1976|loc=Theorem 3.3}}{{sfnp|Hardy|Wright|2008|pp=347-350|loc=§18.2}}

:\mbox{for all } x\geq1, \sum_{n\leq x}d(n)=x\log x+(2\gamma-1)x+O(\sqrt{x}),

where \gamma is Euler's gamma constant. Improving the bound O(\sqrt{x}) in this formula is known as Dirichlet's divisor problem.

{{anchor|Robin's theorem|Robin's inequality|Grönwall's theorem}}

The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by: {{sfnp|Hardy|Wright|2008|pp=469-471|loc=§22.9}}

:

\limsup_{n\rightarrow\infty}\frac{\sigma(n)}{n\,\log \log n}=e^\gamma,

where lim sup is the limit superior. This result is Grönwall's theorem, published in 1913 {{harv|Grönwall|1913}}. His proof uses Mertens' third theorem, which says that:

:\lim_{n\to\infty}\frac{1}{\log n}\prod_{p\le n}\frac{p}{p-1}=e^\gamma,

where p denotes a prime.

In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, Robin's inequality

:\ \sigma(n) < e^\gamma n \log \log n (where γ is the Euler–Mascheroni constant)

holds for all sufficiently large n {{harv|Ramanujan|1997}}. The largest known value that violates the inequality is n=5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true {{harv|Robin|1984}}. This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant {{harv|Akbary|Friggstad|2009}}. It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime {{Harv|Choie|Lichiardopol|Moree|Solé|2007}}.

Robin also proved, unconditionally, that the inequality:

:\ \sigma(n) < e^\gamma n \log \log n + \frac{0.6483\ n}{\log \log n}

holds for all n ≥ 3.

A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:

: \sigma(n) < H_n + e^{H_n}\log(H_n)

for every natural number n > 1, where H_n is the nth harmonic number, {{harv|Lagarias|2002}}.

See also

Notes

{{reflist}}

References

  • {{Citation|doi=10.4169/193009709X470128|first1=Amir|last1=Akbary|first2=Zachary|last2=Friggstad|title=Superabundant numbers and the Riemann hypothesis|url=http://webdocs.cs.ualberta.ca/~zacharyf/Papers/superabundant.pdf|journal=American Mathematical Monthly|volume=116|issue=3|year=2009|pages=273–275|url-status=dead|archive-url=https://web.archive.org/web/20140411041855/http://webdocs.cs.ualberta.ca/~zacharyf/papers/superabundant.pdf|archive-date=2014-04-11}}.
  • {{Apostol IANT}}
  • Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, volume 1, 1996, MIT Press. {{ISBN|0-262-02405-5}}, see page 234 in section 8.8.
  • {{Citation | last1=Caveney | first1=Geoffrey | last2=Nicolas | first2=Jean-Louis|author2-link=Jean-Louis Nicolas | last3=Sondow | first3=Jonathan | title=Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis | url=http://www.integers-ejcnt.org/l33/l33.pdf | year=2011 | journal=INTEGERS: The Electronic Journal of Combinatorial Number Theory | volume=11 | pages=A33| bibcode=2011arXiv1110.5078C | arxiv=1110.5078 }}
  • {{Citation | last1=Choie | first1=YoungJu | author1-link= YoungJu Choie | last2=Lichiardopol | first2=Nicolas | last3=Moree | first3=Pieter | author3-link=Pieter Moree | last4=Solé | first4=Patrick | title=On Robin's criterion for the Riemann hypothesis | mr=2394891 | zbl=1163.11059 | arxiv=math.NT/0604314 | year=2007 | journal=Journal de théorie des nombres de Bordeaux | issn=1246-7405 | volume=19 | issue=2 | pages=357–372 | doi=10.5802/jtnb.591| s2cid=3207238 }}
  • {{citation

| last1 = Gioia | first1 = A. A.

| last2 = Vaidya | first2 = A. M.

| doi = 10.2307/2315280

| journal = The American Mathematical Monthly

| jstor = 2315280

| mr = 220659

| pages = 969–973

| title = Amicable numbers with opposite parity

| volume = 74

| year = 1967| issue = 8

}}

  • {{Citation | last1=Grönwall | first1=Thomas Hakon | author1-link=Thomas Hakon Grönwall | title=Some asymptotic expressions in the theory of numbers | year=1913 | journal=Transactions of the American Mathematical Society | volume=14 | issue=1 | pages=113–122 | doi=10.1090/S0002-9947-1913-1500940-6| doi-access=free }}
  • {{Citation | last1=Hardy | first1=G. H. | author1-link=G. H. Hardy | last2=Wright | first2=E. M. | author2-link=E. M. Wright | edition=6th | others=Revised by D. R. Heath-Brown and J. H. Silverman. Foreword by Andrew Wiles. | title=An Introduction to the Theory of Numbers | publisher=Oxford University Press | location=Oxford | isbn=978-0-19-921986-5 | mr=2445243 | zbl=1159.11001 | year=2008 | orig-year=1938}}
  • {{citation | last=Ivić | first=Aleksandar | title=The Riemann zeta-function. The theory of the Riemann zeta-function with applications | series=A Wiley-Interscience Publication | location=New York etc. | publisher=John Wiley & Sons | year=1985 | isbn=0-471-80634-X | zbl=0556.10026 | pages=385–440 }}
  • {{Citation | last1=Lagarias | first1=Jeffrey C. | author1-link=Jeffrey C. Lagarias | title=An elementary problem equivalent to the Riemann hypothesis | doi=10.2307/2695443 | jstor=2695443 | mr=1908008 | year=2002 | journal=The American Mathematical Monthly | issn=0002-9890 | volume=109 | issue=6 | pages=534–543| arxiv=math/0008177 | s2cid=15884740 }}
  • {{citation | first1 = Calvin T. | last1 = Long | year = 1972 | title = Elementary Introduction to Number Theory | edition = 2nd | publisher = D. C. Heath and Company | location = Lexington | lccn = 77171950 }}
  • {{citation | first1 = Anthony J. | last1 = Pettofrezzo | first2 = Donald R. | last2 = Byrkit | year = 1970 | title = Elements of Number Theory | publisher = Prentice Hall | location = Englewood Cliffs | lccn = 77081766 }}
  • {{Citation | last=Ramanujan | first=Srinivasa | author-link=Srinivasa Ramanujan | title=Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin | doi=10.1023/A:1009764017495 | mr=1606180 | year=1997 | journal=The Ramanujan Journal | issn=1382-4090 | volume=1 | issue=2 | pages=119–153| s2cid=115619659 }}
  • {{Citation | last1=Robin | first1=Guy | title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann | mr=774171 | year=1984 | journal=Journal de Mathématiques Pures et Appliquées|series= Neuvième Série | issn=0021-7824 | volume=63 | issue=2 | pages=187–213}}
  • {{citation | last=Williams | first=Kenneth S. | title=Number theory in the spirit of Liouville | zbl=1227.11002 | series=London Mathematical Society Student Texts | volume=76 | location=Cambridge | publisher=Cambridge University Press | isbn=978-0-521-17562-3 | year=2011 }}