electroosmotic pump

{{Short description|Device that generates flow using an electric field}}

An electroosmotic pump is used for generating flow or pressure by use of an electric field.{{cite book| author=Kirby, B.J.| title=Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices.| url=http://www.kirbyresearch.com/textbook| year=2010| publisher=Cambridge University Press| isbn=978-0-521-11903-0| access-date=2011-01-08| archive-date=2019-04-28| archive-url=https://web.archive.org/web/20190428234717/http://www.kirbyresearch.com/textbook/| url-status=dead}}{{cite book | author=Bruus, H. | title=Theoretical Microfluidics | year= 2007}} One application of this is removing liquid flooding water from channels and gas diffusion layers and direct hydration of the proton exchange membrane in the membrane electrode assembly (MEA) of the proton exchange membrane fuel cells.{{Cite web |url=http://microfluidics.asu.edu/fcells.html |title=microfluidics EO pump |access-date=2008-01-18 |archive-url=https://web.archive.org/web/20080209233819/http://microfluidics.asu.edu/fcells.html |archive-date=2008-02-09 |url-status=dead }} Additionally, electroosmotic pumps have gained significant attention due to their potential applications in microfluidic channels, lab-on-a-chip devices, and biomedical engineering.{{Cite journal |last=Li |first=Lin |last2=Wang |first2=Xiayan |last3=Pu |first3=Qiaosheng |last4=Liu |first4=Shaorong |date=2019-07-04 |title=Advancement of electroosmotic pump in microflow analysis: A review |url=https://linkinghub.elsevier.com/retrieve/pii/S0003267019301643 |journal=Analytica Chimica Acta |volume=1060 |pages=1–16 |doi=10.1016/j.aca.2019.02.004 |issn=0003-2670}}{{Cite journal |last=Terutsuki |first=Daigo |last2=Miyazawa |first2=Sho |last3=Takagi |first3=Junya |last4=Yamada |first4=Akihiro |last5=Sun |first5=Yunhao |last6=Abe |first6=Hiroya |last7=Wang |first7=Gaobo |last8=Nishizawa |first8=Matsuhiko |date=January 2024 |title=Spatiotemporally Controllable Chemical Delivery Utilizing Electroosmotic Flow Generated in Combination of Anionic and Cationic Hydrogels |url=https://onlinelibrary.wiley.com/doi/10.1002/adfm.202304946 |journal=Advanced Functional Materials |language=en |volume=34 |issue=2 |doi=10.1002/adfm.202304946 |issn=1616-301X}}

Principle

Electroosmotic pumps are fabricated from silica nanospheres[https://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/9993/32105/01497386.pdf Silica nanospheres][http://microfluidics.stanford.edu/fuel_cells.htm Galvanostatic Measurements] {{webarchive |url=https://web.archive.org/web/20080628192632/http://microfluidics.stanford.edu/fuel_cells.htm |date=June 28, 2008 }} or hydrophilic porous glass, the pumping mechanism is generated by an external electric field applied on an electric double layer (EDL), generates high pressures (e.g., more than 340 atm (34 MPa) at 12 kV applied potentials) and high flow rates (e.g., 40 ml/min at 100 V in a pumping structure less than 1 cm3 in volume). EO pumps are compact, have no moving parts, and scale favorably with fuel cell design. The EO pump might drop the parasitic load of water management in fuel cells from 20% to 0.5% of the fuel cell power.{{Cite web |url=http://www.nsti.org/BioNano2007/showabstract.html?absno=3149 |title=Parasitic load in fuel cells |access-date=2008-01-23 |archive-url=https://web.archive.org/web/20071228095639/http://www.nsti.org/BioNano2007/showabstract.html?absno=3149 |archive-date=2007-12-28 |url-status=dead }}

Types

=Cascaded electroosmotic pumps=

High pressures or high flow rates are obtained by positioning several regular electroosmotic pumps in series or parallel respectively.{{Cite web |url=http://www2.mic.dtu.dk/research/MIFTS/publications/pub2003/cascadeEOFpump.pdf |title=Cascade EO pump |access-date=2008-01-23 |archive-url=https://web.archive.org/web/20070629143747/http://www2.mic.dtu.dk/research/MIFTS/publications/pub2003/cascadeEOFpump.pdf |archive-date=2007-06-29 |url-status=dead }}

=Porous electroosmotic pump=

Pumps based on porous media can be created using sintered glass{{cite journal | url=https://www.sciencedirect.com/science/article/abs/pii/S0021979703007306 | doi=10.1016/S0021-9797(03)00730-6 | title=Porous glass electroosmotic pumps: Design and experiments | journal=Journal of Colloid and Interface Science | date=December 2003 | volume=268 | issue=1 | pages=143–153 | last1=Yao | first1=Shuhuai | last2=Hertzog | first2=David E. | last3=Zeng | first3=Shulin | last4=Mikkelsen | first4=James C. | last5=Santiago | first5=Juan G. | pmid=14611783 | bibcode=2003JCIS..268..143Y }}[http://tel.archives-ouvertes.fr/docs/00/33/52/82/PDF/These_finale.pdf Sintred alumina electroosmotic pump] or microporous polymer membranes {{cite journal|last1=Bengtsson|first1=K.|last2=Robinson|first2=N. D.|journal=Microfluidics and Nanofluidics|volume=21|pages=178|doi=10.1007/s10404-017-2017-1|title=A large-area, all-plastic, flexible electroosmotic pump|year=2017|issue=12 |s2cid=254195527 |doi-access=free}} with appropriate surface chemistry.

=Planar shallow electroosmotic pump=

Planar shallow electroosmotic pumps are made of parallel shallow microchannels.{{Cite web |url=http://microfluidics.stanford.edu/pubs/chen2002-EOpumpslit.pdf |title=Planar shallow electroosmotic pump |access-date=2008-01-23 |archive-url=https://web.archive.org/web/20070622142436/http://microfluidics.stanford.edu/pubs/chen2002-EOpumpslit.pdf |archive-date=2007-06-22 |url-status=dead }}

= Electroosmotic micropumps =

Electroosmotic effects can also be induced without external fields in order to power micron-scale motion. Bimetallic gold/silver patches have been shown to generate local fluid pumping by this mechanism when hydrogen peroxide is added to the solution.{{Cite journal|last1=Kline|first1=Timothy R.|last2=Paxton|first2=Walter F.|last3=Wang|first3=Yang|last4=Velegol|first4=Darrell|last5=Mallouk|first5=Thomas E.|last6=Sen|first6=Ayusman|date=December 2005|title=Catalytic Micropumps: Microscopic Convective Fluid Flow and Pattern Formation|journal=Journal of the American Chemical Society|language=en|volume=127|issue=49|pages=17150–17151|doi=10.1021/ja056069u|pmid=16332039|issn=0002-7863}} A related motion can be induced by silver phosphate particles, which can be tailored to generate reversible firework behavior among other properties.{{Cite journal|last1=Altemose|first1=Alicia|last2=Sánchez-Farrán|first2=María Antonieta|last3=Duan|first3=Wentao|last4=Schulz|first4=Steve|last5=Borhan|first5=Ali|last6=Crespi|first6=Vincent H.|last7=Sen|first7=Ayusman|date=2017-05-30|title=Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies|journal=Angewandte Chemie International Edition|language=en|volume=56|issue=27|pages=7817–7821|doi=10.1002/anie.201703239|issn=1433-7851|pmid=28493638|doi-access=free}} Titanium dioxide micromotors (TiO2) demonstrated swarming behavior in the absence or presence of additional fuels due to the self-generated electrolyte diffusioosmosis.{{Cite journal |last=Zhang |first=Jianhua |last2=Laskar |first2=Abhrajit |last3=Song |first3=Jiaqi |last4=Shklyaev |first4=Oleg E. |last5=Mou |first5=Fangzhi |last6=Guan |first6=Jianguo |last7=Balazs |first7=Anna C. |last8=Sen |first8=Ayusman |date=2023-01-10 |title=Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms |url=https://pubs.acs.org/doi/10.1021/acsnano.2c07266 |journal=ACS Nano |language=en |volume=17 |issue=1 |pages=251–262 |doi=10.1021/acsnano.2c07266 |issn=1936-0851}}

See also

References

{{reflist}}