elongation factor
{{distinguish|Relative elongation}}
{{Redirect2|EF2|EF-2|the tornado intensity rating|Enhanced Fujita scale#Parameters}}
{{more citations needed|date=October 2019}}
{{Short description|Proteins functioning in translation}}
Elongation factors are a set of proteins that function at the ribosome, during protein synthesis, to facilitate translational elongation from the formation of the first to the last peptide bond of a growing polypeptide. Most common elongation factors in prokaryotes are EF-Tu, EF-Ts, EF-G.{{cite encyclopedia |last1=Parker |first1=J. |title=Elongation Factors; Translation |encyclopedia=Encyclopedia of Genetics |date=2001 |pages=610–611 |doi=10.1006/rwgn.2001.0402|isbn=9780122270802 }} Bacteria and eukaryotes use elongation factors that are largely homologous to each other, but with distinct structures and different research nomenclatures.{{Cite journal|last1=Sasikumar|first1=Arjun N.|last2=Perez|first2=Winder B.|last3=Kinzy|first3=Terri Goss|date=July 2012|title=The Many Roles of the Eukaryotic Elongation Factor 1 Complex|journal=Wiley Interdisciplinary Reviews. RNA|volume=3|issue=4|pages=543–555|doi=10.1002/wrna.1118|issn=1757-7004|pmc=3374885|pmid=22555874}}
Elongation is the most rapid step in translation.{{Cite journal|last1=Prabhakar|first1=Arjun|last2=Choi|first2=Junhong|last3=Wang|first3=Jinfan|last4=Petrov|first4=Alexey|last5=Puglisi|first5=Joseph D.|date=July 2017|title=Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination|journal=Protein Science |volume=26|issue=7|pages=1352–1362|doi=10.1002/pro.3190|issn=0961-8368|pmc=5477533|pmid=28480640}} In bacteria, it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second).{{citation needed|date=October 2019}} In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).{{citation needed|date=October 2019}} Elongation factors play a role in orchestrating the events of this process, and in ensuring the high accuracy translation at these speeds.{{citation needed|date=October 2019}}
Nomenclature of homologous EFs
In addition to their cytoplasmic machinery, eukaryotic mitochondria and plastids have their own translation machinery, each with their own set of bacterial-type elongation factors.{{cite journal |doi-access=free |last1=Manuell |first1=Andrea L |last2=Quispe |first2=Joel |last3=Mayfield |first3=Stephen P |last4=Petsko |first4=Gregory A |title=Structure of the Chloroplast Ribosome: Novel Domains for Translation Regulation |journal=PLOS Biology |date=7 August 2007 |volume=5 |issue=8 |pages=e209 |doi=10.1371/journal.pbio.0050209|pmid=17683199 |pmc=1939882 }}{{Cite journal|author1=G C Atkinson |author2=S L Baldauf | title=Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms| journal=Molecular Biology and Evolution| year=2011| volume=28| issue=3| pages=1281–92| pmid = 21097998| doi=10.1093/molbev/msq316 | doi-access=free}} In humans, they include TUFM, TSFM, GFM1, GFM2, GUF1; the nominal release factor MTRFR may also play a role in elongation.{{cite web |title=KEGG DISEASE: Combined oxidative phosphorylation deficiency |url=https://www.genome.jp/dbget-bin/www_bget?ds:H00891 |website=www.genome.jp}}
In bacteria, selenocysteinyl-tRNA requires a special elongation factor SelB ({{UniProt|P14081}}) related to EF-Tu. A few homologs are also found in archaea, but the functions are unknown.{{cite journal |last1=Atkinson |first1=Gemma C |last2=Hauryliuk |first2=Vasili |last3=Tenson |first3=Tanel |title=An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea |journal=BMC Evolutionary Biology |date=21 January 2011 |volume=11 |issue=1 |page=22 |doi=10.1186/1471-2148-11-22|pmid=21255425 |pmc=3037878 |doi-access=free }}
As a target
Elongation factors are targets for the toxins of some pathogens. For instance, Corynebacterium diphtheriae produces diphtheria toxin, which alters protein function in the host by inactivating elongation factor (EF-2). This results in the pathology and symptoms associated with diphtheria. Likewise, Pseudomonas aeruginosa exotoxin A inactivates EF-2.{{cite journal | vauthors = Lee H, Iglewski WJ | year = 1984 | title = Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 81 | pages = 2703–7 | pmid = 6326138 | doi = 10.1073/pnas.81.9.2703 | issue = 9 | pmc = 345138 | bibcode = 1984PNAS...81.2703L | doi-access = free }}
References
{{reflist}}
Further reading
- Alberts, B. et al. (2002). Molecular Biology of the Cell, 4th ed. New York: Garland Science. {{ISBN|0-8153-3218-1}}.{{page needed|date=October 2019}}
- Berg, J. M. et al. (2002). Biochemistry, 5th ed. New York: W.H. Freeman and Company. {{ISBN|0-7167-3051-0}}.{{page needed|date=October 2019}}
- Singh, B. D. (2002). Fundamentals of Genetics, New Delhi, India: Kalyani Publishers. {{ISBN|81-7663-109-4}}.{{page needed|date=October 2019}}
External links
- [https://web.archive.org/web/20121015234642/http://www.nobelprize.org/educational/medicine/dna/a/translation/elongation.html nobelprize.org] Explaining the function of eukaryotic elongation factors
- {{MeshName|Elongation+Factor}}
- {{MeshName|Peptide+Elongation+Factor+G}}
- {{MeshName|Peptide+Elongation+Factor+Tu}}
- {{EC number|3.6.5.3}}
{{GeneticTranslation}}
{{GTPases}}