enumerations of specific permutation classes

In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, where two seemingly-unrelated permutation classes have the same number of permutations of each length.

Classes avoiding one pattern of length 3

There are two symmetry classes and a single Wilf class for single permutations of length three.

class="wikitable" style="text-align:left;" border="1" cell-padding="2"
βsequence enumerating Avn(β)OEIStype of sequenceexact enumeration reference

[https://permpal.com/perms/basis/123/ 123]

231

1, 2, 5, 14, 42, 132, 429, 1430, ...{{OEIS link|id=A000108}}algebraic (nonrational) g.f.
Catalan numbers
{{harvtxt|MacMahon|1916}}
{{harvtxt|Knuth|1968}}

Classes avoiding one pattern of length 4

There are seven symmetry classes and three Wilf classes for single permutations of length four.

class="wikitable" style="text-align:left;" border="1" cell-padding="2"
βsequence enumerating Avn(β)OEIStype of sequenceexact enumeration reference

[https://permpal.com/perms/basis/1342/ 1342]

[https://permpal.com/perms/basis/2413/ 2413]

1, 2, 6, 23, 103, 512, 2740, 15485, ...{{OEIS link|id=A022558}}algebraic (nonrational) g.f.{{harvtxt|Bóna|1997}}

[https://permpal.com/perms/basis/1234/ 1234]

[https://permpal.com/perms/basis/1243/ 1243]

[https://permpal.com/perms/basis/1432/ 1432]

2143

1, 2, 6, 23, 103, 513, 2761, 15767, ...{{OEIS link|id=A005802}}holonomic (nonalgebraic) g.f.{{harvtxt|Gessel|1990}}
13241, 2, 6, 23, 103, 513, 2762, 15793, ...{{OEIS link|id=A061552}}

No non-recursive formula counting 1324-avoiding permutations is known. A recursive formula was given by {{harvtxt|Marinov|Radoičić|2003}}.

A more efficient algorithm using functional equations was given by {{harvtxt|Johansson|Nakamura|2014}}, which was enhanced by {{harvtxt|Conway|Guttmann|2015}}, and then further enhanced by {{harvtxt|Conway|Guttmann|Zinn-Justin|2018}} who give the first 50 terms of the enumeration.

{{harvtxt|Bevan|Brignall|Elvey Price|Pantone|2017}} have provided lower and upper bounds for the growth of this class.

Classes avoiding two patterns of length 3

There are five symmetry classes and three Wilf classes, all of which were enumerated in {{harvtxt|Simion|Schmidt|1985}}.

class="wikitable" style="text-align:left;" border="1" cell-padding="2"
Bsequence enumerating Avn(B)OEIStype of sequence
[https://permpal.com/perms/basis/123_321/ 123, 321]1, 2, 4, 4, 0, 0, 0, 0, ...n/afinite
[https://permpal.com/perms/basis/213_321/ 213, 321]1, 2, 4, 7, 11, 16, 22, 29, ...{{OEIS link|id=A000124}}polynomial, {n\choose 2}+1

[https://permpal.com/perms/basis/231_321/ 231, 321]

132, 312

231, 312

1, 2, 4, 8, 16, 32, 64, 128, ...{{OEIS link|id=A000079}}rational g.f., 2^{n-1}

Classes avoiding one pattern of length 3 and one of length 4

There are eighteen symmetry classes and nine Wilf classes, all of which have been enumerated. For these results, see {{harvtxt|Atkinson|1999}} or {{harvtxt|West|1996}}.

class="wikitable" style="text-align:left;" border="1" cell-padding="2"
Bsequence enumerating Avn(B)OEIStype of sequence
[https://permpal.com/perms/basis/321_1234/ 321, 1234]1, 2, 5, 13, 25, 25, 0, 0, ...n/afinite
[https://permpal.com/perms/basis/321_2134/ 321, 2134]1, 2, 5, 13, 30, 61, 112, 190, ...{{OEIS link|id=A116699}}polynomial
[https://permpal.com/perms/basis/132_4321/ 132, 4321]1, 2, 5, 13, 31, 66, 127, 225, ...{{OEIS link|id=A116701}}polynomial
[https://permpal.com/perms/basis/321_1324/ 321, 1324]1, 2, 5, 13, 32, 72, 148, 281, ...{{OEIS link|id=A179257}}polynomial
[https://permpal.com/perms/basis/321_1342/ 321, 1342]1, 2, 5, 13, 32, 74, 163, 347, ...{{OEIS link|id=A116702}}rational g.f.
[https://permpal.com/perms/basis/321_2143/ 321, 2143]1, 2, 5, 13, 33, 80, 185, 411, ...{{OEIS link|id=A088921}}rational g.f.

[https://permpal.com/perms/basis/132_4312/ 132, 4312]

[https://permpal.com/perms/basis/132_4231/ 132, 4231]

1, 2, 5, 13, 33, 81, 193, 449, ...{{OEIS link|id=A005183}}rational g.f.
[https://permpal.com/perms/basis/132_3214/ 132, 3214]1, 2, 5, 13, 33, 82, 202, 497, ...{{OEIS link|id=A116703}}rational g.f.

[https://permpal.com/perms/basis/321_2341/ 321, 2341]

[https://permpal.com/perms/basis/321_3412/ 321, 3412]

[https://permpal.com/perms/basis/321_3142/ 321, 3142]

[https://permpal.com/perms/basis/132_1234/ 132, 1234]

[https://permpal.com/perms/basis/132_4213/ 132, 4213]

[https://permpal.com/perms/basis/132_4123/ 132, 4123]

[https://permpal.com/perms/basis/132_3124/ 132, 3124]

[https://permpal.com/perms/basis/132_2134/ 132, 2134]

[https://permpal.com/perms/basis/132_3412/ 132, 3412]

1, 2, 5, 13, 34, 89, 233, 610, ...{{OEIS link|id=A001519}}rational g.f.,
alternate Fibonacci numbers

Classes avoiding two patterns of length 4

File:Heatmaps of all non-finite permutation classes avoiding two length four patterns 11 by 5.png

There are 56 symmetry classes and 38 Wilf equivalence classes. Only 3 of these remain unenumerated, and their generating functions are conjectured not to satisfy any algebraic differential equation (ADE) by {{harvtxt|Albert|Homberger|Pantone|Shar|2018}}; in particular, their conjecture would imply that these generating functions are not D-finite.

Heatmaps of each of the non-finite classes are shown on the right. The lexicographically minimal symmetry is used for each class, and the classes are ordered in lexicographical order. To create each heatmap, one million permutations of length 300 were sampled uniformly at random from the class. The color of the point (i,j) represents how many permutations have value j at index i. Higher resolution versions can be obtained at [https://permpal.com/ PermPal]

class="wikitable" style="text-align:left;" border="1" cell-padding="2"
Bsequence enumerating Avn(B)OEIStype of sequenceexact enumeration reference
[https://permpal.com/perms/basis/4321_1234/ 4321, 1234]1, 2, 6, 22, 86, 306, 882, 1764, ...{{OEIS link|id=A206736 }}finiteErdős–Szekeres theorem
[https://permpal.com/perms/basis/4312_1234/ 4312, 1234]1, 2, 6, 22, 86, 321, 1085, 3266, ...{{OEIS link|id=A116705}}polynomial{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
[https://permpal.com/perms/basis/4321_3124/ 4321, 3124]1, 2, 6, 22, 86, 330, 1198, 4087, ...{{OEIS link|id=A116708}}rational g.f.{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
[https://permpal.com/perms/basis/4312_2134/ 4312, 2134]1, 2, 6, 22, 86, 330, 1206, 4174, ...{{OEIS link|id=A116706}}rational g.f.{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
[https://permpal.com/perms/basis/4321_1324/ 4321, 1324]1, 2, 6, 22, 86, 332, 1217, 4140, ...{{OEIS link|id=A165524}}polynomial{{harvtxt|Vatter|2012}}
[https://permpal.com/perms/basis/4321_2143/ 4321, 2143]1, 2, 6, 22, 86, 333, 1235, 4339, ...{{OEIS link|id=A165525}}rational g.f.{{harvtxt|Albert|Atkinson|Brignall|2012}}
[https://permpal.com/perms/basis/4312_1324/ 4312, 1324]1, 2, 6, 22, 86, 335, 1266, 4598, ...{{OEIS link|id=A165526}}rational g.f.{{harvtxt|Albert|Atkinson|Brignall|2012}}
[https://permpal.com/perms/basis/4231_2143/ 4231, 2143]1, 2, 6, 22, 86, 335, 1271, 4680, ...{{OEIS link|id=A165527}}rational g.f.{{harvtxt|Albert|Atkinson|Brignall|2011}}
[https://permpal.com/perms/basis/4231_1324/ 4231, 1324]1, 2, 6, 22, 86, 336, 1282, 4758, ...{{OEIS link|id=A165528}}rational g.f.{{harvtxt|Albert|Atkinson|Vatter|2009}}
[https://permpal.com/perms/basis/4213_2341/ 4213, 2341]1, 2, 6, 22, 86, 336, 1290, 4870, ...{{OEIS link|id=A116709}}rational g.f.{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
[https://permpal.com/perms/basis/4312_2143/ 4312, 2143]1, 2, 6, 22, 86, 337, 1295, 4854, ...{{OEIS link|id=A165529}}rational g.f.{{harvtxt|Albert|Atkinson|Brignall|2012}}
[https://permpal.com/perms/basis/4213_1243/ 4213, 1243]1, 2, 6, 22, 86, 337, 1299, 4910, ...{{OEIS link|id=A116710}}rational g.f.{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
[https://permpal.com/perms/basis/4321_3142/ 4321, 3142]1, 2, 6, 22, 86, 338, 1314, 5046, ...{{OEIS link|id=A165530}}rational g.f.{{harvtxt|Vatter|2012}}
[https://permpal.com/perms/basis/4213_1342/ 4213, 1342]1, 2, 6, 22, 86, 338, 1318, 5106, ...{{OEIS link|id=A116707}}rational g.f.{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
[https://permpal.com/perms/basis/4312_2341/ 4312, 2341]1, 2, 6, 22, 86, 338, 1318, 5110, ...{{OEIS link|id=A116704}}rational g.f.{{harvtxt|Kremer|Shiu|2003}};
{{harvtxt|Vatter|2006}}
3412, 21431, 2, 6, 22, 86, 340, 1340, 5254, ...{{OEIS link|id=A029759}}algebraic (nonrational) g.f.{{harvtxt|Atkinson|1998}}

[https://permpal.com/perms/basis/4321_4123/ 4321, 4123]

[https://permpal.com/perms/basis/4321_3412/ 4321, 3412]

[https://permpal.com/perms/basis/4123_3214/ 4123, 3214]

[https://permpal.com/perms/basis/4123_2143/ 4123, 2143]

1, 2, 6, 22, 86, 342, 1366, 5462, ...{{OEIS link|id=A047849}}rational g.f.{{harvtxt|Kremer|Shiu|2003}}
[https://permpal.com/perms/basis/4123_2341/ 4123, 2341]1, 2, 6, 22, 87, 348, 1374, 5335, ...{{OEIS link|id=A165531}}algebraic (nonrational) g.f.{{harvtxt|Atkinson|Sagan|Vatter|2012}}
[https://permpal.com/perms/basis/4231_3214/ 4231, 3214]1, 2, 6, 22, 87, 352, 1428, 5768, ...{{OEIS link|id=A165532}}algebraic (nonrational) g.f.{{harvtxt|Miner|2016}}
[https://permpal.com/perms/basis/4213_1432/ 4213, 1432]1, 2, 6, 22, 87, 352, 1434, 5861, ...{{OEIS link|id=A165533}}algebraic (nonrational) g.f.{{harvtxt|Miner|2016}}

[https://permpal.com/perms/basis/4312_3421/ 4312, 3421]

[https://permpal.com/perms/basis/4213_2431/ 4213, 2431]

1, 2, 6, 22, 87, 354, 1459, 6056, ...{{OEIS link|id=A164651}}algebraic (nonrational) g.f.{{harvtxt|Le|2005}} proved the Wilf-equivalence;
{{harvtxt|Callan|2013a}} established the g.f..
[https://permpal.com/perms/basis/4312_3124/ 4312, 3124]1, 2, 6, 22, 88, 363, 1507, 6241, ...{{OEIS link|id=A165534}}algebraic (nonrational) g.f.{{harvtxt|Pantone|2017}}
[https://permpal.com/perms/basis/4231_3124/ 4231, 3124]1, 2, 6, 22, 88, 363, 1508, 6255, ...{{OEIS link|id=A165535}}algebraic (nonrational) g.f.{{harvtxt|Albert|Atkinson|Vatter|2014}}
[https://permpal.com/perms/basis/4312_3214/ 4312, 3214]1, 2, 6, 22, 88, 365, 1540, 6568, ...{{OEIS link|id=A165536}}algebraic (nonrational) g.f.{{harvtxt|Miner|2016}}

[https://permpal.com/perms/basis/4231_3412/ 4231, 3412]

[https://permpal.com/perms/basis/4231_3142/ 4231, 3142]

[https://permpal.com/perms/basis/4213_3241/ 4213, 3241]

[https://permpal.com/perms/basis/4213_3124/ 4213, 3124]

[https://permpal.com/perms/basis/4213_2314/ 4213, 2314]

1, 2, 6, 22, 88, 366, 1552, 6652, ...{{OEIS link|id=A032351}}algebraic (nonrational) g.f.{{harvtxt|Bóna|1998}}
[https://permpal.com/perms/basis/4213_2143/ 4213, 2143]1, 2, 6, 22, 88, 366, 1556, 6720, ...{{OEIS link|id=A165537}}algebraic (nonrational) g.f.{{harvtxt|Bevan|2016b}}
[https://permpal.com/perms/basis/4312_3142/ 4312, 3142]1, 2, 6, 22, 88, 367, 1568, 6810, ...{{OEIS link|id=A165538}}algebraic (nonrational) g.f.{{harvtxt|Albert|Atkinson|Vatter|2014}}
[https://permpal.com/perms/basis/4213_3421/ 4213, 3421]1, 2, 6, 22, 88, 367, 1571, 6861, ...{{OEIS link|id=A165539}}algebraic (nonrational) g.f.{{harvtxt|Bevan|2016a}}

[https://permpal.com/perms/basis/4213_3412/ 4213, 3412]

[https://permpal.com/perms/basis/4123_3142/ 4123, 3142]

1, 2, 6, 22, 88, 368, 1584, 6968, ...{{OEIS link|id=A109033}}algebraic (nonrational) g.f.{{harvtxt|Le|2005}}
[https://permpal.com/perms/basis/4321_3214/ 4321, 3214]1, 2, 6, 22, 89, 376, 1611, 6901, ...{{OEIS link|id=A165540}}algebraic (nonrational) g.f.{{harvtxt|Bevan|2016a}}
[https://permpal.com/perms/basis/4213_3142/ 4213, 3142]1, 2, 6, 22, 89, 379, 1664, 7460, ...{{OEIS link|id=A165541}}algebraic (nonrational) g.f.{{harvtxt|Albert|Atkinson|Vatter|2014}}
[https://permpal.com/perms/basis/4231_4123/ 4231, 4123]1, 2, 6, 22, 89, 380, 1677, 7566, ...{{OEIS link|id=A165542}}conjectured to not satisfy any ADE;
see {{harvtxt|Albert|Homberger|Pantone|Shar|2018}}
[https://permpal.com/perms/basis/4321_4213/ 4321, 4213]1, 2, 6, 22, 89, 380, 1678, 7584, ...{{OEIS link|id=A165543}}algebraic (nonrational) g.f.{{harvtxt|Callan|2013b}};
see also {{harvtxt|Bloom|Vatter|2016}}
[https://permpal.com/perms/basis/4123_3412/ 4123, 3412]1, 2, 6, 22, 89, 381, 1696, 7781, ...{{OEIS link|id=A165544}}algebraic (nonrational) g.f.{{harvtxt|Miner|Pantone|2018}}
[https://permpal.com/perms/basis/4312_4123/ 4312, 4123]1, 2, 6, 22, 89, 382, 1711, 7922, ...{{OEIS link|id=A165545}}conjectured to not satisfy any ADE;
see {{harvtxt|Albert|Homberger|Pantone|Shar|2018}}

[https://permpal.com/perms/basis/4321_4312/ 4321, 4312]

[https://permpal.com/perms/basis/4312_4231/ 4312, 4231]

[https://permpal.com/perms/basis/4312_4213/ 4312, 4213]

[https://permpal.com/perms/basis/4312_3412/ 4312, 3412]

[https://permpal.com/perms/basis/4231_4213/ 4231, 4213]

[https://permpal.com/perms/basis/4213_4132/ 4213, 4132]

[https://permpal.com/perms/basis/4213_4123/ 4213, 4123]

[https://permpal.com/perms/basis/4213_2413/ 4213, 2413]

[https://permpal.com/perms/basis/4213_3214/ 4213, 3214]

3142, 2413

1, 2, 6, 22, 90, 394, 1806, 8558, ...{{OEIS link|id=A006318}}Schröder numbers
algebraic (nonrational) g.f.
{{harvtxt|Kremer|2000}};
see also {{harvtxt|Kremer|2003}}
[https://permpal.com/perms/basis/3412_2413/ 3412, 2413]1, 2, 6, 22, 90, 395, 1823, 8741, ...{{OEIS link|id=A165546}}algebraic (nonrational) g.f.{{harvtxt|Miner|Pantone|2018}}
[https://permpal.com/perms/basis/4321_4231/ 4321, 4231]1, 2, 6, 22, 90, 396, 1837, 8864, ...{{OEIS link|id=A053617}}conjectured to not satisfy any ADE;
see {{harvtxt|Albert|Homberger|Pantone|Shar|2018}}

See also

References

  • {{Citation | last1=Albert | first1=Michael H. | author1-link=Michael H. Albert | last2=Elder | first2=Murray | last3=Rechnitzer | first3=Andrew | last4=Westcott | first4=P. | last5=Zabrocki | first5=Mike | title=On the Stanley–Wilf limit of 4231-avoiding permutations and a conjecture of Arratia | mr=2199982 | year=2006 | journal=Advances in Applied Mathematics | volume=36 | issue=2 | pages=96–105 | doi=10.1016/j.aam.2005.05.007| doi-access=free | hdl=10453/98769 | hdl-access=free }}.
  • {{Citation

|last1=Albert

|first1=Michael H.

|author1-link=Michael H. Albert

|last2=Atkinson

|first2=M. D.

|author2-link=Michael D. Atkinson

|last3=Brignall

|first3=Robert

|title=The enumeration of permutations avoiding 2143 and 4231

|year=2011

|journal=Pure Mathematics and Applications

|volume=22

|pages=87–98

|url=http://puma.dimai.unifi.it/22_2/albert_atkinson_brignall.pdf

|mr=2924740

|arxiv=1108.0989

}}.

  • {{Citation

| last1=Albert | first1=Michael H. | author1-link=Michael H. Albert

| last2=Atkinson | first2=M. D. |author2-link=Michael D. Atkinson

| last3=Brignall | first3=Robert

| title=The enumeration of three pattern classes using monotone grid classes

| year=2012

| journal=Electronic Journal of Combinatorics

| volume=19 | issue = 3

| pages=Paper 20, 34 pp

| doi=10.37236/2442 | url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p20

| mr=2967225

| doi-access=free}}.

  • {{Citation

| last1=Albert | first1=Michael H. | author1-link=Michael H. Albert

| last2=Atkinson | first2=M. D. |author2-link=Michael D. Atkinson

| last3=Vatter | first3=Vincent

| title=Counting 1324, 4231-avoiding permutations

| year=2009

| journal=Electronic Journal of Combinatorics

| volume=16 | issue = 1

| pages=Paper 136, 9 pp

| doi=10.37236/225 | mr=2577304

| url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i1r136| arxiv=1102.5568}}.

  • {{Citation

| last1=Albert | first1=Michael H. | author1-link=Michael H. Albert

| last2=Atkinson | first2=M. D. |author2-link=Michael D. Atkinson

| last3=Vatter | first3=Vincent

| title=Inflations of geometric grid classes: three case studies

| year=2014

| journal=Australasian Journal of Combinatorics

| volume=58 | issue = 1

| pages=27–47

| url=http://ajc.maths.uq.edu.au/pdf/58/ajc_v58_p027.pdf

| mr=3211768

}}.

  • {{Citation

| last1=Albert | first1=Michael H. | author1-link=Michael H. Albert

| last2=Homberger | first2=Cheyne

| last3=Pantone | first3=Jay

| last4=Shar | first4=Nathaniel

| last5=Vatter | first5=Vincent

| title=Generating permutations with restricted containers

| year=2018

| journal=Journal of Combinatorial Theory, Series A

| volume=157

| pages=205–232

| doi=10.1016/j.jcta.2018.02.006

| arxiv=1510.00269

| mr=3780412

}}.

  • {{Citation

| last1=Atkinson | first1=M. D. | author1-link=Michael D. Atkinson

| title=Permutations which are the union of an increasing and a decreasing subsequence

| year=1998

| journal=Electronic Journal of Combinatorics

| volume=5

| pages=Paper 6, 13 pp

| doi=10.37236/1344

| mr=1490467

| url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v5i1r6| doi-access=free

}}.

  • {{Citation

| last1=Atkinson | first1=M. D. | author1-link=Michael D. Atkinson

| title=Restricted permutations

| year=1999

| journal=Discrete Mathematics

| volume=195

| issue=1–3

| pages=27–38

| mr=1663866

| doi=10.1016/S0012-365X(98)00162-9| doi-access=

}}.

  • {{Citation

| last1=Atkinson | first1=M. D. | author1-link=Michael D. Atkinson

| last2=Sagan | first2=Bruce E. | author2-link=Bruce Sagan

| last3=Vatter | first3=Vincent

| title=Counting (3+1)-avoiding permutations

| year=2012

| journal=European Journal of Combinatorics

| volume=33

| pages=49–61

| mr=2854630

| doi=10.1016/j.ejc.2011.06.006| doi-access=free

}}.

  • {{Citation

| last1=Bevan | first1=David | author1-link=David Bevan (mathematician)

| title=Permutations avoiding 1324 and patterns in Łukasiewicz paths

| year=2015

| journal=J. London Math. Soc.

| volume=92

| issue = 1

| pages=105–122

| doi=10.1112/jlms/jdv020

| mr=3384507

| arxiv=1406.2890

}}.

  • {{Citation

| last1=Bevan | first1=David | author1-link=David Bevan (mathematician)

| title=The permutation classes Av(1234,2341) and Av(1243,2314)

| year=2016a

| journal=Australasian Journal of Combinatorics

| volume=64 | issue = 1

| pages=3–20

| url=http://ajc.maths.uq.edu.au/pdf/64/ajc_v64_p003.pdf

| mr=3426209

}}.

  • {{Citation

| last1=Bevan | first1=David | author1-link=David Bevan (mathematician)

| title=The permutation class Av(4213,2143)

| year=2016b

| journal=Discrete Mathematics & Theoretical Computer Science

| volume=18 | issue = 2

| pages=14 pp

| doi=10.46298/dmtcs.1309 | arxiv=1510.06328 | url=https://dmtcs.episciences.org/3236

}}.

  • {{Citation

| last1=Bevan | first1=David | author1-link=David Bevan (mathematician)

| last2=Brignall | first2=Robert

| last3=Elvey Price | first3=Andrew

| last4=Pantone | first4=Jay

| title=A structural characterisation of Av(1324) and new bounds on its growth rate

| year=2017

| arxiv=1711.10325

| bibcode=2017arXiv171110325B}}.

  • {{Citation

| last1=Bloom | first1=Jonathan

| last2=Vatter | first2=Vincent

| title=Two vignettes on full rook placements

| year=2016

| journal=Australasian Journal of Combinatorics

| volume=64 | issue = 1

| pages=77–87

| url=http://ajc.maths.uq.edu.au/pdf/64/ajc_v64_p077.pdf

| mr=3426214

}}.

  • {{Citation

| last1=Bóna | first1=Miklós | authorlink = Miklós Bóna

| title=Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps

| mr=1485138 | year=1997 | journal=Journal of Combinatorial Theory, Series A | volume=80 | issue=2 | pages=257–272 | doi = 10.1006/jcta.1997.2800| arxiv=math/9702223 }}.

  • {{Citation

| last1=Bóna | first1=Miklós | authorlink = Miklós Bóna

| title=The permutation classes equinumerous to the smooth class

| year=1998

| journal=Electronic Journal of Combinatorics

| volume=5

| pages=Paper 31, 12 pp

| doi=10.37236/1369 | mr=1626487

| url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v5i1r31| doi-access=free

}}.

  • {{Citation

| last1=Bóna | first1=Miklós | authorlink = Miklós Bóna

| title=A new record for 1324-avoiding permutations

| year=2015

| journal=European Journal of Mathematics

| volume=1

| issue=1

| pages=198–206

| doi=10.1007/s40879-014-0020-6

| mr=3386234

| arxiv=1404.4033}}.

  • {{Citation

| last1=Callan | first1=David

| title=The number of {1243, 2134}-avoiding permutations

| journal=Discrete Mathematics & Theoretical Computer Science

| year=2013a

| doi=10.46298/dmtcs.5287

|arxiv=1303.3857

| bibcode=2013arXiv1303.3857C}}.

  • {{Citation

| last1=Callan | first1=David

| title=Permutations avoiding 4321 and 3241 have an algebraic generating function

| journal=Discrete Mathematics & Theoretical Computer Science

| year=2013b

| doi=10.46298/dmtcs.5286

|arxiv=1306.3193

| bibcode=2013arXiv1306.3193C}}.

  • {{Citation

| last1=Conway | first1=Andrew

| last2=Guttmann | first2=Anthony

| title=On 1324-avoiding permutations

| journal=Advances in Applied Mathematics

| year=2015

| volume=64

| pages=50–69

| doi=10.1016/j.aam.2014.12.004

| mr=3300327

| doi-access=

}}.

  • {{Citation

| last1=Conway | first1=Andrew

| last2=Guttmann | first2=Anthony

| last3=Zinn-Justin | first3=Paul

| title=1324-avoiding permutations revisited

| year=2018

| journal=Advances in Applied Mathematics

| volume=96

| pages=312–333

| doi=10.1016/j.aam.2018.01.002| arxiv=1709.01248}}.

  • {{Citation | last1=Gessel | first1=Ira M. |author1-link=Ira Gessel | title=Symmetric functions and P-recursiveness | mr=1041448 | year=1990 | journal=Journal of Combinatorial Theory, Series A | volume=53 | issue=2 | pages=257–285 | doi = 10.1016/0097-3165(90)90060-A| doi-access= }}.
  • {{Citation

| last1=Johansson | first1=Fredrik

| last2=Nakamura | first2=Brian

| title=Using functional equations to enumerate 1324-avoiding permutations

| journal=Advances in Applied Mathematics | year=2014 | volume=56 | pages=20–34

| doi=10.1016/j.aam.2014.01.006

| mr=3194205

| arxiv=1309.7117}}.

  • {{ Citation

| last=Knuth

| first=Donald E.

| author-link=Donald Knuth

| title=The Art Of Computer Programming Vol. 1

| publisher=Addison-Wesley

| place=Boston

| year=1968

| isbn=978-0-201-89683-1

| oclc=155842391

| mr=0286317

| title-link=The Art of Computer Programming

}}.

  • {{Citation

| last1=Kremer | first1=Darla

| title=Permutations with forbidden subsequences and a generalized Schröder number

| year=2000

| journal=Discrete Mathematics

| volume=218

| issue=1–3

| pages=121–130

| mr=1754331

| doi=10.1016/S0012-365X(99)00302-7| doi-access=

}}.

  • {{Citation

| last1=Kremer | first1=Darla

| title=Postscript: "Permutations with forbidden subsequences and a generalized Schröder number"

| year=2003

| journal=Discrete Mathematics

| volume=270

| issue=1–3

| pages=333–334

| mr=1997910

| doi=10.1016/S0012-365X(03)00124-9| doi-access=

}}.

  • {{Citation

| last1=Kremer | first1=Darla

| last2=Shiu | first2=Wai Chee

| title=Finite transition matrices for permutations avoiding pairs of length four patterns

| year=2003

| journal=Discrete Mathematics

| volume=268

| issue=1–3

| pages=171–183

| mr=1983276

| doi=10.1016/S0012-365X(03)00042-6| doi-access=

}}.

  • {{Citation

| last1=Le | first1=Ian

| title=Wilf classes of pairs of permutations of length 4

| year=2005

| journal=Electronic Journal of Combinatorics

| volume=12

| pages=Paper 25, 27 pp

| doi=10.37236/1922

| mr=2156679

| url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v12i1r25| doi-access=free

}}.

  • {{ Citation

| last=MacMahon

| first=Percy A.

| author-link=Percy Alexander MacMahon

| title=Combinatory Analysis

| publisher=Cambridge University Press

| place=London

| year=1916

| mr=0141605

}}.

  • {{Citation

| last1=Marinov | first1=Darko

| last2=Radoičić | first2=Radoš

| title=Counting 1324-avoiding permutations

| year=2003

| journal=Electronic Journal of Combinatorics

| volume=9 | issue = 2

| pages=Paper 13, 9 pp

| doi=10.37236/1685

| mr=2028282

| url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i2r13

| doi-access=free

}}.

  • {{Citation

| last1=Miner | first1=Sam

| title=Enumeration of several two-by-four classes

| year=2016

|arxiv=1610.01908

| bibcode=2016arXiv161001908M}}.

  • {{Citation

| last1=Miner | first1=Sam

| last2=Pantone | first2=Jay

| title= Completing the structural analysis of the 2x4 permutation classes

| year=2018

| arxiv=1802.00483

| bibcode=2018arXiv180200483M}}.

  • {{Citation

| last1=Pantone | first1=Jay

| title=The enumeration of permutations avoiding 3124 and 4312

| year=2017

| journal=Annals of Combinatorics

| volume=21

| number=2

| pages=293–315

| doi=10.1007/s00026-017-0352-2

| arxiv=1309.0832

}}.

  • {{Citation

| last1=Simion | first1=Rodica | author1-link = Rodica Simion

| last2=Schmidt | first2=Frank W.

| title=Restricted permutations

| year=1985

| journal=European Journal of Combinatorics

| volume=6

| issue=4 | pages=383–406

| mr=0829358

| doi=10.1016/s0195-6698(85)80052-4

| doi-access=

}}.

  • {{Citation

| last1=Vatter | first1=Vincent

| title=Finitely labeled generating trees and restricted permutations

| year=2006

| journal=Journal of Symbolic Computation

| volume=41

| issue=5

| pages=559–572

| mr=2209164

| doi=10.1016/j.jsc.2005.10.003

}}.

  • {{Citation

| last1=Vatter | first1=Vincent

| title=Finding regular insertion encodings for permutation classes

| year=2012

| journal=Journal of Symbolic Computation

| volume=47

| issue=3

| pages=259–265

| mr=2869320

| doi=10.1016/j.jsc.2011.11.002| arxiv=0911.2683

}}.

  • {{Citation

| last1=West | first1=Julian

| title=Generating trees and forbidden subsequences

| year=1996

| journal=Discrete Mathematics

| volume=157

| issue=1–3

| pages=363–374

| mr=1417303

| doi=10.1016/S0012-365X(96)83023-8| doi-access=

}}.