extranatural transformation

{{Short description|Generalization of natural transformations}}

In mathematics, specifically in category theory, an extranatural transformationEilenberg and Kelly, A generalization of the functorial calculus, J. Algebra 3 366–375 (1966) is a generalization of the notion of natural transformation.

Definition

Let F:A\times B^\mathrm{op}\times B\rightarrow D and G:A\times C^\mathrm{op}\times C\rightarrow D be two functors of categories.

A family \eta (a,b,c):F(a,b,b)\rightarrow G(a,c,c) is said to be natural in a and extranatural in b and c if the following holds:

  • \eta(-,b,c) is a natural transformation (in the usual sense).
  • (extranaturality in b) \forall (g:b\rightarrow b^\prime)\in \mathrm{Mor}\, B, \forall a\in A, \forall c\in C the following diagram commutes

:: \begin{matrix}

F(a,b',b) & \xrightarrow{F(1,1,g)} & F(a,b',b') \\

_{F(1,g,1)}\downarrow\qquad & & _{\eta(a,b',c)}\downarrow\qquad \\

F(a,b,b) & \xrightarrow{\eta(a,b,c)} & G(a,c,c)

\end{matrix}

  • (extranaturality in c) \forall (h:c\rightarrow c^\prime)\in \mathrm{Mor}\, C, \forall a\in A, \forall b\in B the following diagram commutes

:: \begin{matrix}

F(a,b,b) & \xrightarrow{\eta(a,b,c')} & G(a,c',c') \\

_{\eta(a,b,c)}\downarrow\qquad & & _{G(1,h,1)}\downarrow\qquad \\

G(a,c,c) & \xrightarrow{G(1,1,h)} & G(a,c,c')

\end{matrix}

Properties

Extranatural transformations can be used to define wedges and thereby endsFosco Loregian, This is the (co)end, my only (co)friend, arXiv preprint [https://arxiv.org/abs/1501.02503] (dually co-wedges and co-ends), by setting F (dually G) constant.

Extranatural transformations can be defined in terms of dinatural transformations, of which they are a special case.

See also

References