fin
{{Short description|Thin component or appendage attached to a larger body or structure}}
{{about|the term in aerodynamics|other uses}}
File:Trailing edge NACA 0012.svg that provide lift or thrust, or provide the ability to steer or stabilize motion in water or air.}}]]
A fin is a thin component or appendage attached to a larger body or structure.{{cite book |title=A Dictionary of Aviation |first=David W. |last=Wragg |isbn=9780850451634 |edition=first |publisher=Osprey |year=1973 |page=131}} Fins typically function as foils that produce lift or thrust, or provide the ability to steer or stabilize motion while traveling in water, air, or other fluids. Fins are also used to increase surface areas for heat transfer purposes, or simply as ornamentation.[https://web.archive.org/web/20121029054614/http://oxforddictionaries.com/definition/american_english/fin Fin] Oxford dictionary. Retrieved 24 November 2012.[http://www.merriam-webster.com/dictionary/fin Fin] {{Webarchive|url=https://web.archive.org/web/20201126080311/https://www.merriam-webster.com/dictionary/fin |date=2020-11-26 }} Merriam-Webster dictionary. Retrieved 24 November 2012.
Fins first evolved on fish as a means of locomotion. Fish fins are used to generate thrust and control the subsequent motion. Fish and other aquatic animals, such as cetaceans, actively propel and steer themselves with pectoral and tail fins. As they swim, they use other fins, such as dorsal and anal fins, to achieve stability and refine their maneuvering.Helfman G, Collette BB, Facey DE and Bowen BW (2009) [http://limnology.wisc.edu/courses/zoo510/2009/helfman_ch8.pdf "Functional morphology of locomotion and feeding"] {{webarchive|url=https://web.archive.org/web/20150602082907/http://limnology.wisc.edu/courses/zoo510/2009/helfman_ch8.pdf |date=2015-06-02 }} Chapter 8, pp. 101–116. In:The Diversity of Fishes: Biology, John Wiley & Sons. {{ISBN|9781444311907}}.
The fins on the tails of cetaceans, ichthyosaurs, metriorhynchids, mosasaurs and plesiosaurs are called flukes.
Thrust generation
Foil shaped fins generate thrust when moved, the lift of the fin sets water or air in motion and pushes the fin in the opposite direction. Aquatic animals get significant thrust by moving fins back and forth in water. Often the tail fin is used, but some aquatic animals generate thrust from pectoral fins. Fins can also generate thrust if they are rotated in air or water. Turbines and propellers (and sometimes fans and pumps) use a number of rotating fins, also called foils, wings, arms or blades. Propellers use the fins to translate torquing force to lateral thrust, thus propelling an aircraft or ship.Carlton, John (2007) [https://books.google.com/books?id=QrLNCxzynU4C Marine Propellers and Propulsion] Pages 1–28, Butterworth-Heinemann. {{ISBN|9780750681506}}. Turbines work in reverse, using the lift of the blades to generate torque and power from moving gases or water.Soares, Claire (2008) [https://books.google.com/books?id=rTPZp1YCQBkC Gas Turbines: A Handbook of Air, Land, and Sea Applications] {{Webarchive|url=https://web.archive.org/web/20231216095310/https://books.google.com/books?id=rTPZp1YCQBkC |date=2023-12-16 }} Pages 1–23, Butterworth-Heinemann. {{ISBN|9780750679695}}.
{{multiple image
| align = left
| direction = horizontal
| header = Moving fins can provide thrust
| header_align = center
| header_background =
| image1 = Barb gonio 080525 9610 ltn Cf.jpg
| width1 = 122
| alt1 =
| caption1 = Fish get thrust moving vertical tail fins from side to side.
| image2 = Southern right whale caudal fin-2 no sky.JPG
| width2 = 179
| alt2 =
| caption2 = Cetaceans get thrust moving horizontal tail fins up and down.
| image3 = Dasyatis thetidis.jpg
| width3 = 135
| alt3 =
| caption3 = Stingrays get thrust from large pectoral fins.
}}
{{multiple image
| align = left
| direction = horizontal
| header =
| header_align = center
| header_background =
| image1 = Stern of Bro Elisabeth 2.jpg
| width1 = 141
| alt1 =
| caption1 = Ship propeller
| image2 =
| width2 = 140
| alt2 =
| caption2 = Airplane propeller
| image3 = MAKS-2007-turbine.JPG
| width3 = 156
| alt3 =
| caption3 = Compressor fins (blades)
}}
{{clear left}}
{{multiple image
| align = right
| direction = vertical
| width = 150
| header =
| header_align = center
| header_background =
| image1 = Cavitation Propeller Damage.JPG
| alt1 =
| caption1 = Cavitation damage is evident on this propeller.
| image2 = Thunnus obesus (Bigeye tuna) diagram cropped.GIF
| alt2 =
| caption2 = {{center|Drawing by Dr Tony Ayling
Finlets may influence the way a vortex develops around the tail fin.}}
}}
Cavitation can be a problem with high power applications, resulting in damage to propellers or turbines, as well as noise and loss of power.Franc, Jean-Pierre and Michel, Jean-Marie (2004) [https://books.google.com/books?id=QJOQYa_oo24C Fundamentals of Cavitation] {{Webarchive|url=https://web.archive.org/web/20231216095310/https://books.google.com/books?id=QJOQYa_oo24C |date=2023-12-16 }} Springer. {{ISBN|9781402022326}}. Cavitation occurs when negative pressure causes bubbles (cavities) to form in a liquid, which then promptly and violently collapse. It can cause significant damage and wear. Cavitation damage can also occur to the tail fins of powerful swimming marine animals, such as dolphins and tuna. Cavitation is more likely to occur near the surface of the ocean, where the ambient water pressure is relatively low. Even if they have the power to swim faster, dolphins may have to restrict their speed because collapsing cavitation bubbles on their tail are too painful.{{cite magazine | last = Brahic | first = Catherine | title = Dolphins swim so fast it hurts | magazine = New Scientist | date = 2008-03-28 | url = https://www.newscientist.com/channel/life/dn13553-dolphins-swim-so-fast-it-hurts.html | access-date = 2008-03-31 | archive-date = 2020-11-09 | archive-url = https://web.archive.org/web/20201109040122/https://www.newscientist.com/article/dn13553-dolphins-swim-so-fast-it-hurts/?ignored=irrelevant | url-status = live }} Cavitation also slows tuna, but for a different reason. Unlike dolphins, these fish do not feel the bubbles, because they have bony fins without nerve endings. Nevertheless, they cannot swim faster because the cavitation bubbles create a vapor film around their fins that limits their speed. Lesions have been found on tuna that are consistent with cavitation damage.
Scombrid fishes (tuna, mackerel and bonito) are particularly high-performance swimmers. Along the margin at the rear of their bodies is a line of small rayless, non-retractable fins, known as finlets. There has been much speculation about the function of these finlets. Research done in 2000 and 2001 by Nauen and Lauder indicated that "the finlets have a hydrodynamic effect on local flow during steady swimming" and that "the most posterior finlet is oriented to redirect flow into the developing tail vortex, which may increase thrust produced by the tail of swimming mackerel".{{cite journal | last1 = Nauen | first1 = JC | last2 = Lauder | first2 = GV | year = 2001a | title = Locomotion in scombrid fishes: visualization of flow around the caudal peduncle and finlets of the Chub mackerel Scomber japonicus | url = http://jeb.biologists.org/content/204/13/2251.long | journal = Journal of Experimental Biology | volume = 204 | issue = 13 | pages = 2251–63 | doi = 10.1242/jeb.204.13.2251 | pmid = 11507109 | bibcode = 2001JExpB.204.2251N | access-date = 2012-11-20 | archive-date = 2020-08-07 | archive-url = https://web.archive.org/web/20200807052800/http://jeb.biologists.org/content/204/13/2251.long | url-status = live }}{{cite journal | last1 = Nauen | first1 = JC | last2 = Lauder | first2 = GV | year = 2001b | title = Three-dimensional analysis of finlet kinematics in the Chub mackerel (Scomber japonicus) | journal = The Biological Bulletin | volume = 200 | issue = 1 | pages = 9–19 | doi = 10.2307/1543081 | pmid = 11249216 | jstor = 1543081 | s2cid = 28910289 | url = https://www.biodiversitylibrary.org/part/10992 | access-date = 2021-05-19 | archive-date = 2020-06-14 | archive-url = https://web.archive.org/web/20200614084947/https://www.biodiversitylibrary.org/part/10992 | url-status = live }}{{cite journal | last1 = Nauen | first1 = JC | last2 = Lauder | first2 = GV | year = 2000 | title = Locomotion in scombrid fishes: morphology and kinematics of the finlets of the Chub mackerel Scomber japonicus | url = http://jeb.biologists.org/content/203/15/2247.full.pdf | journal = Journal of Experimental Biology | volume = 203 | issue = 15 | pages = 2247–59 | doi = 10.1242/jeb.203.15.2247 | pmid = 10887065 | bibcode = 2000JExpB.203.2247N | access-date = 2012-11-20 | archive-date = 2020-10-01 | archive-url = https://web.archive.org/web/20201001091120/http://jeb.biologists.org/content/203/15/2247.full.pdf | url-status = live }}
Fish use multiple fins, so it is possible that a given fin can have a hydrodynamic interaction with another fin. In particular, the fins immediately upstream of the caudal (tail) fin may be proximate fins that can directly affect the flow dynamics at the caudal fin. In 2011, researchers using volumetric imaging techniques were able to generate "the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes". They found that "continuous tail beats resulted in the formation of a linked chain of vortex rings" and that "the dorsal and anal fin wakes are rapidly entrained by the caudal fin wake, approximately within the timeframe of a subsequent tail beat".{{cite journal | last1 = Flammang | first1 = BE | last2 = Lauder | first2 = GV | last3 = Troolin | first3 = DR | last4 = Strand | first4 = TE | year = 2011 | title = Volumetric imaging of fish locomotion | url = http://intl-rsbl.royalsocietypublishing.org/content/7/5/695.full | journal = Biology Letters | volume = 7 | issue = 5 | pages = 695–698 | doi = 10.1098/rsbl.2011.0282 | pmid = 21508026 | pmc = 3169073 | access-date = 2012-11-21 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304031235/http://intl-rsbl.royalsocietypublishing.org/content/7/5/695.full | url-status = live }}
{{clear}}
Motion control
File:Orca porpoising.jpg, to generate thrust and control the subsequent motion.* {{cite journal | last1 = Fish | first1 = FE | year = 2002 | title = Balancing requirements for stability and maneuverability in cetaceans | journal = Integrative and Comparative Biology | volume = 42 | issue = 1| pages = 85–93 | doi = 10.1093/icb/42.1.85 | pmid=21708697| doi-access = free }}* {{cite journal | last1 = Fish | first1 = FE | last2 = Lauder | first2 = GV | s2cid = 4983205 | year = 2006 | title = Passive and active flow control by swimming fishes and mammals | journal = Annual Review of Fluid Mechanics | volume = 38 | issue = 1| pages = 193–224 | doi = 10.1146/annurev.fluid.38.050304.092201 | bibcode = 2006AnRFM..38..193F }}}}]]
Once motion has been established, the motion itself can be controlled with the use of other fins. Boats control direction (yaw) with fin-like rudders, and roll with stabilizer and keel fins.Perez, Tristan (2005) [https://books.google.com/books?id=lxlO3d2srAIC Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder and Fins] {{Webarchive|url=https://web.archive.org/web/20231216095310/https://books.google.com/books?id=lxlO3d2srAIC |date=2023-12-16 }} Springer. {{ISBN|9781852339593}}. Airplanes achieve similar results with small specialised fins that change the shape of their wings and tail fins.McClamroch, N Harris (2011) [https://books.google.com/books?id=DKK7m8o7_ZkC&pg=PA58 Steady Aircraft Flight and Performance] {{Webarchive|url=https://web.archive.org/web/20231216095310/https://books.google.com/books?id=DKK7m8o7_ZkC&pg=PA58#v=onepage&q&f=false |date=2023-12-16 }} Page 2–3, Princeton University Press. {{ISBN|9780691147192}}.
{{multiple image
| align = left
| direction = horizontal
| header = Specialised fins are used to control motion
| header_align = center
| header_background =
| image1 = Rotations.png
| width1 = 221
| alt1 =
| caption1 = Fish, boats and airplanes need control of three degrees of rotational freedom.Magnuson JJ (1978) [https://books.google.com/books?id=wnjnyAafAzUC&pg=PA239 "Locomotion by scombrid fishes: Hydromechanics, morphology and behavior"] {{Webarchive|url=https://web.archive.org/web/20231216095310/https://books.google.com/books?hl=en&lr=&id=wnjnyAafAzUC&oi=fnd&pg=PA239#v=onepage&q&f=false |date=2023-12-16 }} in Fish Physiology, Volume 7: Locomotion, WS Hoar and DJ Randall (Eds) Academic Press. Page 240–308. {{ISBN|9780123504074}}.[http://www.pomorci.com/Zanimljivosti/Ship's%20movements%20at%20sea.pdf Ship's movements at sea] {{webarchive|url=https://web.archive.org/web/20111125015923/http://www.pomorci.com/Zanimljivosti/Ship%27s%20movements%20at%20sea.pdf |archive-url=https://web.archive.org/web/20100821040522/http://www.pomorci.com/Zanimljivosti/Ship's%20movements%20at%20sea.pdf |archive-date=2010-08-21 |url-status=live |date=November 25, 2011 }} Retrieved 22 November 2012.Rana and Joag (2001) [https://books.google.com/books?id=1kxkdWGa9-cC&pg=PA391 Classical Mechanics] {{Webarchive|url=https://web.archive.org/web/20231216095310/https://books.google.com/books?id=1kxkdWGa9-cC&pg=PA391 |date=2023-12-16 }} Page 391, Tata McGraw-Hill Education. {{ISBN|9780074603154}}.
| image3 = White shark (cropped).jpg
| width3 = 214
| alt3 =
| caption3 = The dorsal fin of a white shark contain dermal fibers that work "like riggings that stabilize a ship's mast", and stiffen dynamically as the shark swims faster to control roll and yaw.{{cite journal | last1 = Lingham | last2 = Soliar | first2 = T | s2cid = 827610 | year = 2005 | title = Dorsal fin in the white shark, Carcharodon carcharias: A dynamic stabilizer for fast swimming | journal = Journal of Morphology | volume = 263 | issue = 1| pages = 1–11 | doi = 10.1002/jmor.10207 | pmid=15536651}}
}}
File:Great white shark, Carcharodon carcharias.jpg]]
{{multiple image
| align = left
| direction = horizontal
| header =
| header_align = center
| header_background =
| image1 = Yacht keel steer.svg
| width1 = 117
| alt1 =
| caption1 = A rudder corrects yaw
| image2 = Yacht keel.svg
| width2 = 117
| alt2 =
| caption2 = A fin keel limits roll and sideways drift
| image3 = Stabilizer1.JPG
| width3 = 200
| alt3 =
| caption3 = Ship stabilising fins reduce roll
}}
{{multiple image
| align = left
| caption_align = center
| direction = horizontal
| header =
| header_align = center
| header_background =
| image1 = Aileron roll.gif
| width1 = 145
| alt1 =
| caption1 = Ailerons control roll
| image2 = Aileron pitch.gif
| width2 = 145
| alt2 =
| caption2 = Elevators control pitch
| image3 = Aileron yaw.gif
| width3 = 145
| alt3 =
| caption3 = The rudder controls yaw
}}
{{clear}}
Stabilising fins are used as fletching on arrows and some darts,Vujic, Dragan (2007) [https://books.google.com/books?id=YsiPb2nmYdEC&pg=PA17 Bow Hunting Whitetails] {{Webarchive|url=https://web.archive.org/web/20231216095311/https://books.google.com/books?id=YsiPb2nmYdEC&pg=PA17 |date=2023-12-16 }} Page 17, iUniverse. {{ISBN|9780595432073}}. and at the rear of some bombs, missiles, rockets and self-propelled torpedoes.Hobbs, Marvin (2010) [https://books.google.com/books?id=a0TxaTq2rQIC&pg=SA1-PA24 Basics of Missile Guidance and Space Techniques] Page 24, Wildside Press LLC. {{ISBN|9781434421258}}.Compon-Hall, Richard (2004) [https://books.google.com/books?id=EEJ6YaMGkV4C&pg=PA50 Submarines at War 1939–1945] {{Webarchive|url=https://web.archive.org/web/20231216095824/https://books.google.com/books?id=EEJ6YaMGkV4C&pg=PA50#v=onepage&q&f=false |date=2023-12-16 }} Page 50, Periscope Publishing. {{ISBN|9781904381228}}. These are typically planar and shaped like small wings, although grid fins are sometimes used.Khalid M, Sun Y and Xu H (1998) [ftp://ftp.rta.nato.int/Pubfulltext/RTO/MP/.../RTO-MP-005/$MP-005-12.pdf "Computation of Flows Past Grid Fin Missiles"]{{Dead link|date=July 2018 |bot=InternetArchiveBot |fix-attempted=yes }} AVT Symposium on Missile Aerodynamics, Sorrento, Italy. Static fins have also been used for one satellite, GOCE.
{{multiple image
| align = left
| direction = horizontal
| header = Static tail fins are used as stabilizers
| header_align = center
| header_background =
| image1 = Fletching-Arrow-9.jpeg
| width1 = 154
| alt1 =
| caption1 = Fletching on an arrow
| image2 = 122 mm raketti Hämeenlinna 2.JPG
| width2 = 154
| alt2 =
| caption2 = Asymmetric stabilizing fins impart spin to this Soviet artillery rocket
| image3 = USS Essex (LHD-2) launches RIM-7 Sea Sparrow on 6 February 2004 (040206-N-2970T-002).jpg
| width3 = 129
| alt3 =
| caption3 = Conventional "planar" fins on a RIM-7 Sea Sparrow missile
}}
{{clear}}
Temperature regulation
Engineering fins are also used as heat transfer fins to regulate temperature in heat sinks or fin radiators.Siegel R and Howell JR (2002) [https://books.google.com/books?id=O389yQ0-fecC&pg=PA1 Thermal Radiation Heat Transfer] {{Webarchive|url=https://web.archive.org/web/20231216095824/https://books.google.com/books?id=O389yQ0-fecC&pg=PA1#v=onepage&q&f=false |date=2023-12-16 }} Chapter 9: Radiation combined with conduction and convection at boundaries, pp.335–370. Taylor & Francis. {{ISBN|9781560328391}}.[https://www.britannica.com/EBchecked/topic/207095/fin Fin: Function in aircraft engines] {{Webarchive|url=https://web.archive.org/web/20231216095917/https://prebid-server.rubiconproject.com/setuid?bidder=amx&uid=07484e68-faa3-45a1-83dc-4560ee72f259&do=www.britannica.com |date=2023-12-16 }} Encyclopædia Britannica. Retrieved 22 November 2012.
{{multiple image
| align = left
| direction = horizontal
| header = Fins can regulate temperature
| header_align = center
| header_background =
| image1 = ZiD-Sova-175.jpg
| width1 = 167
| alt1 =
| caption1 = Motorbikes use fins to cool the engine.Clarke, Massimo (2010)
[https://books.google.com/books?id=u7U524TamcUC&pg=PA62 Modern Motorcycle Technology] {{Webarchive|url=https://web.archive.org/web/20231216095825/https://books.google.com/books?id=u7U524TamcUC&pg=PA62 |date=2023-12-16 }} Page 62, MotorBooks International. {{ISBN|9780760338193}}.
| image2 = Oil Heater 5293.jpg
| width2 = 71
| alt2 =
| caption2 = Oil heaters convect with fins
| image4 = Istiophorus_platypterus.jpg
| width4 = 198
| alt4 =
| caption4 = Sailfish raise their dorsal fin to cool down or to herd schooling fish.[https://books.google.com/books?id=va1ODFo_tdUC&pg=PA332 Aquatic Life of the World] {{Webarchive|url=https://web.archive.org/web/20231216095825/https://books.google.com/books?id=va1ODFo_tdUC&pg=PA332#v=onepage&q&f=false |date=2023-12-16 }} pp. 332–333, Marshall Cavendish Corporation, 2000. {{ISBN|9780761471707}}.Dement J [http://www.littoralsociety.org/userfiles/doccenter/Species%20Spotlight%20Atlantic%20Sailfish.pdf Species Spotlight: Atlantic Sailfish (Istiophorus albicans)] {{webarchive |url=https://web.archive.org/web/20101217230458/http://www.littoralsociety.org/userfiles/doccenter/Species%20Spotlight%20Atlantic%20Sailfish.pdf |date=December 17, 2010 }} littoralsociety.org. Retrieved 1 April 2012.
}}
{{clear}}
Ornamentation and other uses
In biology, fins can have an adaptive significance as sexual ornaments. During courtship, the female cichlid, Pelvicachromis taeniatus, displays a large and visually arresting purple pelvic fin. "The researchers found that males clearly preferred females with a larger pelvic fin and that pelvic fins grew in a more disproportionate way than other fins on female fish."[https://www.sciencedaily.com/releases/2010/10/101007210540.htm Female fish flaunt fins to attract a mate] {{Webarchive|url=https://web.archive.org/web/20190520152144/https://www.sciencedaily.com/releases/2010/10/101007210540.htm |date=2019-05-20 }} ScienceDaily. 8 October 2010.{{cite journal | last1 = Baldauf | first1 = SA | last2 = Bakker | first2 = TCM | last3 = Herder | first3 = F | last4 = Kullmann | first4 = H | last5 = Thünken | first5 = T | year = 2010 | title = Male mate choice scales female ornament allometry in a cichlid fish | journal = BMC Evolutionary Biology | volume = 10 | issue = 1 | page = 301 | doi = 10.1186/1471-2148-10-301 | pmid = 20932273 | pmc = 2958921 | bibcode = 2010BMCEE..10..301B | doi-access = free }}
{{multiple image
| align = left
| direction = horizontal
| header = Ornamentation
| header_align = center
| header_background =
| image1 = Pelvicachromis taeniatus.jpg
| width1 = 150
| alt1 =
| caption1 = During courtship, the female cichlid, Pelvicachromis taeniatus, displays her visually arresting purple pelvic fin.
| image2 = Spinosaurus 2020 reconstruction.jpg
| width2 = 246
| alt2 =
| caption2 = Spinosaurus may have used its dorsal fin (sail) as a courtship display.{{cite journal |last=Stromer |first=E. |author-link=Ernst Stromer |year=1915 |title=Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltier-Reste der Baharije-Stufe (unterstes Cenoman). 3. Das Original des Theropoden Spinosaurus aegyptiacus nov. gen., nov. spec |journal=Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse |volume=28 |issue=3 |pages=1–32 |language=de |url=http://www.megaupload.com/?d=3KCCC7LS }}{{dead link|date=September 2017 |bot=InternetArchiveBot |fix-attempted=yes }}{{rp|28}}
| image3 = Cadillac1001.jpg
| width3 = 160
| alt3 =
| caption3 = Car tail fins in the 1950s were largely decorative.David, Dennis (2001) [https://books.google.com/books?id=VOi0Omb6newC&pg=PA6 Fifties Fins] {{Webarchive|url=https://web.archive.org/web/20231216095826/https://books.google.com/books?id=VOi0Omb6newC&pg=PA6#v=onepage&q&f=false |date=2023-12-16 }} MotorBooks International. {{ISBN|9780760309612}}.
}}
{{clear}}
Reshaping human feet with swim fins, rather like the tail fin of a fish, add thrust and efficiency to the kicks of a swimmer or underwater diver{{cite journal |vauthors=Zamparo P, Pendergast DR, Termin A, Minetti AE|title=Economy and efficiency of swimming at the surface with fins of different size and stiffness |journal=Eur. J. Appl. Physiol. |volume=96 |issue=4 |pages=459–70 |date=March 2006 |pmid=16341874 |doi=10.1007/s00421-005-0075-7|s2cid=34505861 }}{{cite journal |vauthors=Yamaguchi H, Shidara F, Naraki N, Mohri M |title=Maximum sustained fin-kick thrust in underwater swimming |journal=Undersea Hyperb Med |volume=22 |issue=3 |pages=241–8 |date=September 1995 |pmid=7580765 |url=http://archive.rubicon-foundation.org/2219 |access-date=2008-08-25 |archive-url=https://web.archive.org/web/20110811174931/http://archive.rubicon-foundation.org/2219 |archive-date=2011-08-11 |url-status=usurped }} Surfboard fins provide surfers with means to maneuver and control their boards. Contemporary surfboards often have a centre fin and two cambered side fins.Brandner PA and Walker GJ (2004) [http://eprints.utas.edu.au/6613/1/AFMC_Brandnerand_Walker_2004_F1.pdf Hydrodynamic Performance of a Surfboard Fin] {{Webarchive|url=https://web.archive.org/web/20201030153346/https://eprints.utas.edu.au/6613/1/AFMC_Brandnerand_Walker_2004_F1.pdf |date=2020-10-30 }} 15th Australasian Fluid Mechanics Conference, Sydney.
The bodies of reef fishes are often shaped differently from open water fishes. Open water fishes are usually built for speed, streamlined like torpedoes to minimise friction as they move through the water. Reef fish operate in the relatively confined spaces and complex underwater landscapes of coral reefs. For this manoeuvrability is more important than straight line speed, so coral reef fish have developed bodies which optimize their ability to dart and change direction. They outwit predators by dodging into fissures in the reef or playing hide and seek around coral heads.{{cite book|author=William S. Alevizon|title=Pisces Guide to Caribbean Reef Ecology|url=https://books.google.com/books?id=H9FcAAAAMAAJ|year=1993|publisher=Pisces Books|isbn=978-1-55992-077-3|access-date=2018-04-24|archive-date=2023-12-16|archive-url=https://web.archive.org/web/20231216095827/https://books.google.com/books?id=H9FcAAAAMAAJ|url-status=live}}
The pectoral and pelvic fins of many reef fish, such as butterflyfish, damselfish and angelfish, have evolved so they can act as brakes and allow complex maneuvers.[http://www.flmnh.ufl.edu/fish/education/HowSwim/HowSwim.html Ichthyology] {{Webarchive|url=https://web.archive.org/web/20160105001306/http://www.flmnh.ufl.edu/fish/education/HowSwim/HowSwim.html |date=2016-01-05 }} Florida Museum of Natural History. Retrieved 22 November 2012. Many reef fish, such as butterflyfish, damselfish and angelfish, have evolved bodies which are deep and laterally compressed like a pancake, and will fit into fissures in rocks. Their pelvic and pectoral fins are designed differently, so they act together with the flattened body to optimise maneuverability. Some fishes, such as puffer fish, filefish and trunkfish, rely on pectoral fins for swimming and hardly use tail fins at all.
{{multiple image
| align = left
| direction = horizontal
| width =
| header = Other uses
| header_align = center
| header_background =
| image1 = Jetfins reglables.jpg
| width1 = 92
| alt1 =
| caption1 = Swim fins add thrust to the kicks of a human swimmer.
| image2 = Rescue surfboard, Killahoey Strand - geograph.org.uk - 901180.jpg
| width2 = 100
| alt2 =
| caption2 = Surfboard fins allow surfers to maneuver their boards.
| image3 = Shark finning icon.jpg
| width3 = 97
| alt3 =
| caption3 = In some Asian countries shark fins are a culinary delicacy.{{cite journal | author = Vannuccini S | year = 1999 | title = Shark utilization, marketing and trade | journal = FAO Fisheries Technical Paper | volume = 389 | url = http://www.fao.org/DOCREP/005/X3690E/x3690e0p.htm | access-date = 2012-11-26 | archive-date = 2017-08-02 | archive-url = https://web.archive.org/web/20170802204244/http://www.fao.org/docrep/005/x3690e/x3690e0p.htm | url-status = dead }}
| image4 = Fernando Alonso won 2012 Malaysian GP.jpg
| width4 = 145
| alt4 =
| caption4 = In recent years, car fins have evolved into highly functional spoilers and wings.Ridhwan CZ (2008) [http://umpir.ump.edu.my/581/1/Ridhwan_Che_Zake.pdf Aerodynamics of aftermarket rear spoiler] {{Webarchive|url=https://web.archive.org/web/20111111161147/http://umpir.ump.edu.my/581/1/Ridhwan_Che_Zake.pdf |date=2011-11-11 }} University Malaysia Pahang
}}
{{clear}}
{{multiple image
| align = left
| direction = horizontal
| header =
| header_align = center
| header_background =
| image1 = Holacanthus ciliaris 1.jpg
| width1 = 138
| alt1 =
| caption1 = Many reef fish have pectoral and pelvic fins optimised for flattened bodies.
| image2 = Antennarius striatus.jpg
| width2 = 137
| alt2 =
| caption2 = Frog fish use their pectoral and pelvic fins to walk along the ocean bottom.{{cite book |vauthors=Bertelsen E, Pietsch TW|year=1998|title=Encyclopedia of Fishes|publisher= Academic Press|location=San Diego|pages= 138–139|isbn= 978-0-12-547665-2}}
| image3 = Sailfin flyingfish.jpg
| width3 = 163
| alt3 =
| caption3 = Flying fish use enlarged pectoral fins to glide above the surface of the water.{{cite journal|last=Fish |first=FE |year=1990 |title=Wing design and scaling of flying fish with regard to flight performance |journal=Journal of Zoology |volume=221 |pages=391–403 |url=http://darwin.wcupa.edu/~biology/fish/pubs/pdf/1990JZWingdesign.pdf |doi=10.1111/j.1469-7998.1990.tb04009.x |issue=3 |url-status=dead |archive-url=https://web.archive.org/web/20131020095503/http://darwin.wcupa.edu/~biology/fish/pubs/pdf/1990JZWingdesign.pdf |archive-date=2013-10-20 }}
}}
{{clear left}}
Evolution
File:Lampanyctodes hectoris (fins).png
(1) pectoral fins (paired), (2) pelvic fins (paired), (3) dorsal fin, (4) adipose fin, (5) anal fin, and (6) caudal (tail) fin.}}]]
{{Quote box
|title =
|quote = Aristotle recognised the distinction between analogous and homologous structures, and made the following prophetic comparison:
"Birds in a way resemble fishes. For birds have their wings in the upper part of their bodies and fishes have two fins in the front part of their bodies. Birds have feet on their underpart and most fishes have a second pair of fins in their under-part and near their front fins."
|source = – Aristotle, De incessu animalium {{cite journal | last1 = Moore | first1 = John A | year = 1988 | title = Understanding nature—form and function | url = http://www.sicb.org/dl/saawok/449.pdf | journal = American Zoologist | volume = 28 | issue = 2 | pages = 449–584 [485] | doi = 10.1093/icb/28.2.449 | doi-access = free | access-date = 2014-11-08 | archive-date = 2015-09-24 | archive-url = https://web.archive.org/web/20150924101610/http://www.sicb.org/dl/saawok/449.pdf | url-status = dead }}
|align = right
|salign = right
|width = 220px
}}
There is an old theory, proposed by anatomist Carl Gegenbaur, which has been often disregarded in science textbooks, "that fins and (later) limbs evolved from the gills of an extinct vertebrate". Gaps in the fossil record had not allowed a definitive conclusion. In 2009, researchers from the University of Chicago found evidence that the "genetic architecture of gills, fins and limbs is the same", and that "the skeleton of any appendage off the body of an animal is probably patterned by the developmental genetic program that we have traced back to formation of gills in sharks".[https://www.sciencedaily.com/releases/2009/03/090323212021.htm Evolution Of Fins And Limbs Linked With That Of Gills] {{Webarchive|url=https://web.archive.org/web/20190530052749/https://www.sciencedaily.com/releases/2009/03/090323212021.htm |date=2019-05-30 }} ScienceDaily. 25 March 2009.{{cite journal | last1 = Gillis | first1 = JA | last2 = Dahn | first2 = RD | last3 = Shubin | first3 = NH | year = 2009 | title = Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons | journal = Proceedings of the National Academy of Sciences | volume = 106 | issue = 14| pages = 5720–5724 | doi=10.1073/pnas.0810959106 | pmid=19321424 | pmc=2667079 | bibcode = 2009PNAS..106.5720G| doi-access = free }}[http://www.uctv.tv/shows/Wings-Legs-and-Fins-How-Do-New-Organs-Arise-in-Evolution-16421 Wings, legs, and fins: How do new organs arise in evolution?] {{Webarchive|url=https://web.archive.org/web/20200927104725/http://www.uctv.tv/shows/Wings-Legs-and-Fins-How-Do-New-Organs-Arise-in-Evolution-16421 |date=2020-09-27 }} Neil Shubin, University of Chicago. Recent studies support the idea that gill arches and paired fins are serially homologous and thus that fins may have evolved from gill tissues.{{Cite journal|last1=Sleight|first1=Victoria A|last2=Gillis|first2=J Andrew|date=2020-11-17|title=Embryonic origin and serial homology of gill arches and paired fins in the skate, Leucoraja erinacea|journal=eLife|language=en|volume=9|pages=e60635|doi=10.7554/eLife.60635|pmid=33198887|issn=2050-084X|pmc=7671686 |doi-access=free }}
Fish are the ancestors of all mammals, reptiles, birds and amphibians.[https://www.sciencedaily.com/releases/2008/09/080922090843.htm "Primordial Fish Had Rudimentary Fingers"] {{Webarchive|url=https://web.archive.org/web/20200927203302/https://www.sciencedaily.com/releases/2008/09/080922090843.htm |date=2020-09-27 }} ScienceDaily, 23 September 2008. In particular, terrestrial tetrapods (four-legged animals) evolved from fish and made their first forays onto land 400 million years ago. They used paired pectoral and pelvic fins for locomotion. The pectoral fins developed into forelegs (arms in the case of humans) and the pelvic fins developed into hind legs.Hall, Brian K (2007) [https://books.google.com/books?id=Z0YWn5F9sWkC Fins into Limbs: Evolution, Development, and Transformation] University of Chicago Press. {{ISBN|9780226313375}}. Much of the genetic machinery that builds a walking limb in a tetrapod is already present in the swimming fin of a fish.Shubin, Neil (2009) [https://books.google.com/books?id=c008kdNwR1cC Your inner fish: A journey into the 3.5 billion year history of the human body] {{Webarchive|url=https://web.archive.org/web/20230317010712/https://books.google.com/books?id=c008kdNwR1cC |date=2023-03-17 }} Vintage Books. {{ISBN|9780307277459}}. [http://www.uctv.tv/search-details.aspx?showID=16412 UCTV interview] Clack, Jennifer A (2012) [https://books.google.com/books?id=6Ztrhm8uLQ0C "From fins to feet"] Chapter 6, pages 187–260, in: Gaining Ground, Second Edition: The Origin and Evolution of Tetrapods, Indiana University Press. {{ISBN|9780253356758}}.
File:Crossopterygii fins tetrapod legs.svg and B) the walking leg of a tetrapod. Bones considered to correspond with each other have the same color.]]
File:Ichthyosaurus BW.jpg developed fins (or flippers) very similar to fish (or dolphins).]]
In 2011, researchers at Monash University in Australia used primitive but still living lungfish "to trace the evolution of pelvic fin muscles to find out how the load-bearing hind limbs of the tetrapods evolved."[https://www.sciencedaily.com/releases/2011/10/111004180106.htm Lungfish Provides Insight to Life On Land: 'Humans Are Just Modified Fish'] {{Webarchive|url=https://web.archive.org/web/20201111213122/https://www.sciencedaily.com/releases/2011/10/111004180106.htm |date=2020-11-11 }} ScienceDaily, 7 October 2011.{{cite journal | last1 = Cole | first1 = NJ | last2 = Hall | first2 = TE | last3 = Don | first3 = EK | last4 = Berger | first4 = S | last5 = Boisvert | first5 = CA | display-authors = etal | year = 2011 | title = Development and Evolution of the Muscles of the Pelvic Fin | journal = PLOS Biology | volume = 9 | issue = 10| page = e1001168 | doi = 10.1371/journal.pbio.1001168 | pmid = 21990962 | pmc = 3186808 | doi-access = free }} Further research at the University of Chicago found bottom-walking lungfishes had already evolved characteristics of the walking gaits of terrestrial tetrapods.[https://www.sciencedaily.com/releases/2011/12/111212153117.htm A small step for lungfish, a big step for the evolution of walking"] {{Webarchive|url=https://web.archive.org/web/20170703172143/https://www.sciencedaily.com/releases/2011/12/111212153117.htm |date=2017-07-03 }} ScienceDaily, 13 December 2011.{{cite journal | last1 = King | first1 = HM | last2 = Shubin | first2 = NH | last3 = Coates | first3 = MI | last4 = Hale | first4 = ME | year = 2011 | title = Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes | journal = Proceedings of the National Academy of Sciences | volume = 108 | issue = 52| pages = 21146–21151 | doi=10.1073/pnas.1118669109 | pmid=22160688 | pmc=3248479 | bibcode = 2011PNAS..10821146K| doi-access = free }}
In a classic example of convergent evolution, the pectoral limbs of pterosaurs, birds and bats further evolved along independent paths into flying wings. Even with flying wings there are many similarities with walking legs, and core aspects of the genetic blueprint of the pectoral fin have been retained.{{cite journal | last1 = Shubin | first1 = N | last2 = Tabin | first2 = C | last3 = Carroll | first3 = S | year = 1997 | title = Fossils, genes and the evolution of animal limbs | url = http://genepath.med.harvard.edu/~tabin/Pdfs/Shubin.pdf | journal = Nature | volume = 388 | issue = 6643 | pages = 639–648 | doi = 10.1038/41710 | pmid = 9262397 | url-status = dead | archive-url = https://web.archive.org/web/20120916105318/http://genepath.med.harvard.edu/~tabin/Pdfs/Shubin.pdf | archive-date = 2012-09-16 | bibcode = 1997Natur.388..639S | s2cid = 2913898 }}[http://www.ucmp.berkeley.edu/vertebrates/flight/converge.html Vertebrate flight: The three solutions] {{Webarchive|url=https://web.archive.org/web/20121110035749/http://www.ucmp.berkeley.edu/vertebrates/flight/converge.html |date=2012-11-10 }} University of California. Updated 29 September 2005.
About 200 million years ago the first mammals appeared. A group of these mammals started returning to the sea about 52 million years ago, thus completing a circle. These are the cetaceans (whales, dolphins and porpoises). Recent DNA analysis suggests that cetaceans evolved from within the even-toed ungulates, and that they share a common ancestor with the hippopotamus.{{Cite web|title=Scientists find missing link between the dolphin, whale and its closest relative, the hippo |date=2005-01-25 |access-date=2007-06-18 |url=http://www.sciencenewsdaily.org/story-2806.html |work=Science News Daily |url-status=dead |archive-url=https://web.archive.org/web/20070304214747/http://www.sciencenewsdaily.org/story-2806.html |archive-date=2007-03-04 }}{{Cite journal | title = More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen | author = Gatesy, J. | journal = Molecular Biology and Evolution | volume = 14 | pages = 537–543 | pmid = 9159931 | issue = 5 | date=1 May 1997 | doi=10.1093/oxfordjournals.molbev.a025790| doi-access = free }} About 23 million years ago another group of bearlike land mammals started returning to the sea. These were the pinnipeds (seals).{{
cite journal
| first1=John J. |last1=Flynn
|last2=Finarelli |first2=John
| title=Molecular Phylogeny of the Carnivora
| journal=Systematic Biology
| year=2005
| volume=54
| pages=317–337
| pmid=16012099
| issue=2
| doi=10.1080/10635150590923326
|last3=Hsu |first3=Johnny
|last4=Nedbal |first4=Michael
|display-authors=1
| doi-access=free
}} What had become walking limbs in cetaceans and seals evolved further, independently in a reverse form of convergent evolution, back to new forms of swimming fins. The forelimbs became flippers and, in pinnipeds, the hind limbs became a tail terminating in two fins (the cetacean fluke, conversely, is an entirely new organ).Felts WJL [https://books.google.com/books?id=KyxELyTDlsQC&pg=PA255 "Some functional and structural characteristics of cetacean flippers and flukes"] {{Webarchive|url=https://web.archive.org/web/20231216100000/https://books.google.com/books?hl=en&lr=&id=KyxELyTDlsQC&oi=fnd&pg=PA255#v=onepage&q&f=false |date=2023-12-16 }} Pages 255–275 in: Norris KS (ed.) Whales, Dolphins, and Porpoises, University of California Press. Fish tails are usually vertical and move from side to side. Cetacean flukes are horizontal and move up and down, because cetacean spines bend the same way as in other mammals.[http://evolution.berkeley.edu/evolibrary/article/evograms_03 The evolution of whales] {{Webarchive|url=https://web.archive.org/web/20201216005644/https://evolution.berkeley.edu/evolibrary/article/evograms_03 |date=2020-12-16 }} University of California Museum. Retrieved 27 November 2012.{{cite journal | last1 = Thewissen | first1 = JGM | last2 = Cooper | first2 = LN | last3 = George | first3 = JC | last4 = Bajpai | first4 = S | year = 2009 | title = From Land to Water: the Origin of Whales, Dolphins, and Porpoises | url = http://www.evolbiol.ru/large_files/whales.pdf | journal = Evo Edu Outreach | volume = 2 | issue = 2 | pages = 272–288 | doi = 10.1007/s12052-009-0135-2 | s2cid = 11583496 | doi-access = free | access-date = 2012-11-26 | archive-date = 2020-07-31 | archive-url = https://web.archive.org/web/20200731153046/http://www.evolbiol.ru/large_files/whales.pdf | url-status = live }}
Ichthyosaurs are ancient reptiles that resembled dolphins. They first appeared about 245 million years ago and disappeared about 90 million years ago.
"This sea-going reptile with terrestrial ancestors converged so strongly on fishes that it actually evolved a dorsal fin and tail in just the right place and with just the right hydrological design. These structures are all the more remarkable because they evolved from nothing — the ancestral terrestrial reptile had no hump on its back or blade on its tail to serve as a precursor."Martill D.M. (1993). "Soupy Substrates: A Medium for the Exceptional Preservation of Ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany". Kaupia – Darmstädter Beiträge zur Naturgeschichte, 2 : 77–97.
The biologist Stephen Jay Gould said the ichthyosaur was his favorite example of convergent evolution.Gould, Stephen Jay (1993 [https://archive.org/details/eightlittlepiggi00goul "Bent Out of Shape"] in Eight Little Piggies: Reflections in Natural History. Norton, 179–94. {{ISBN|9780393311396}}.
Robotics
File:RobotFishCharlie.jpg built a robotic catfish called Charlie to test the feasibility of unmanned underwater vehicles.]]
{{externalimage
|float=center
|width=200px
|video1=[https://www.youtube.com/watch?v=lEeb72ZJKAk Charlie the catfish] – CIA video
|video2=[https://www.youtube.com/watch?v=u8tfES8gImc AquaPenguin] – Festo, YouTube
|video3=[https://www.youtube.com/watch?v=-vT-oidWyXE AquaRay] – Festo, YouTube
|video4=[https://www.youtube.com/watch?v=mKMN-dz8n3k AquaJelly] – Festo, YouTube
|video5=[https://www.youtube.com/watch?v=TKeVVKGEDLc AiraCuda ] – Festo, YouTube}}
The use of fins for the propulsion of aquatic animals can be remarkably effective. It has been calculated that some fish can achieve a propulsive efficiency greater than 90%.{{cite journal|last1=Sfakiotakis |first1=M |last2=Lane |first2=DM |last3=Davies |first3=JBC |year=1999 |title=Review of Fish Swimming Modes for Aquatic Locomotion |url=http://www.mor-fin.com/Science-related-links_files/http___www.ece.eps.hw.ac.uk_Research_oceans_people_Michael_Sfakiotakis_IEEEJOE_99.pdf |journal=IEEE Journal of Oceanic Engineering |volume=24 |issue= 2|pages=237–252 |doi=10.1109/48.757275 |url-status=dead |archive-url=https://web.archive.org/web/20131224091124/http://www.mor-fin.com/Science-related-links_files/http___www.ece.eps.hw.ac.uk_Research_oceans_people_Michael_Sfakiotakis_IEEEJOE_99.pdf |archive-date=2013-12-24 |citeseerx=10.1.1.459.8614 |bibcode=1999IJOE...24..237S |s2cid=17226211 }} Fish can accelerate and maneuver much more effectively than boats or submarine, and produce less water disturbance and noise. This has led to biomimetic studies of underwater robots which attempt to emulate the locomotion of aquatic animals.{{cite web|url=http://rjmason.com/ramblings/robotFishMarket.html|author=Richard Mason|title=What is the market for robot fish?|url-status=dead|archive-url=https://web.archive.org/web/20090704021443/http://rjmason.com/ramblings/robotFishMarket.html|archive-date=2009-07-04}} An example is the Robot Tuna built by the [http://fibo.kmutt.ac.th/ Institute of Field Robotics], to analyze and mathematically model thunniform motion.{{cite web|url=http://fibo.kmutt.ac.th/project/eng/current_research/fish.html|publisher=Institute of Field Robotics|title=Fish Robot|author=Witoon Juwarahawong|access-date=2007-10-25 |archive-url = https://web.archive.org/web/20071104081550/http://fibo.kmutt.ac.th/project/eng/current_research/fish.html |archive-date = 2007-11-04}} In 2005, the Sea Life London Aquarium displayed three robotic fish created by the computer science department at the University of Essex. The fish were designed to be autonomous, swimming around and avoiding obstacles like real fish. Their creator claimed that he was trying to combine "the speed of tuna, acceleration of a pike, and the navigating skills of an eel".{{cite web|url=http://cswww.essex.ac.uk/staff/hhu/HCR-Group.html#Entertainment|publisher=Human Centred Robotics Group at Essex University|title=Robotic fish powered by Gumstix PC and PIC|access-date=2007-10-25|archive-url=https://web.archive.org/web/20110814141015/http://cswww.essex.ac.uk/staff/hhu/HCR-Group.html#Entertainment|archive-date=2011-08-14|url-status=dead}}{{Cite web
|url=http://edition.cnn.com/2005/TECH/10/07/spark.fish
|title=Robotic fish make aquarium debut
|work=cnn.com
|publisher=CNN
|date=10 October 2005
|access-date=12 June 2011
|archive-date=26 November 2020
|archive-url=https://web.archive.org/web/20201126104911/http://edition.cnn.com/2005/TECH/10/07/spark.fish/
|url-status=dead
|url=https://www.thetimes.com/travel/destinations/uk-travel/england/london-travel/merlin-entertainments-tops-up-list-of-london-attractions-with-aquarium-buy-6tql7m9knhn
|title=Merlin Entertainments tops up list of London attractions with aquarium buy
|last=Walsh
|first=Dominic
|work=The Times
|publisher=Times of London
|date=3 May 2008
|access-date=12 June 2011
|archive-date=21 December 2016
|archive-url=https://web.archive.org/web/20161221060004/http://www.thetimes.co.uk/tto/business/industries/leisure/article2172983.ece
|url-status=live
}}
The AquaPenguin, developed by Festo of Germany, copies the streamlined shape and propulsion by front flippers of penguins.[http://www.controlengeurope.com/article/24663/For-Festo--Nature-Shows-the-Way.aspx For Festo, Nature Shows the Way] {{Webarchive|url=https://web.archive.org/web/20200928111347/https://www.controlengeurope.com/article/24663/For-Festo--Nature-Shows-the-Way.aspx |date=2020-09-28 }} Control Engineering, 18 May 2009.[http://www.gizmag.com/bionic-penguins-fly-through-water--and-air/11545/ Bionic penguins fly through water... and air] {{Webarchive|url=https://web.archive.org/web/20160304052906/http://www.gizmag.com/bionic-penguins-fly-through-water--and-air/11545/ |date=2016-03-04 }} Gizmag, 27 April 2009. Festo also developed AquaRay,[http://www.technovelgy.com/ct/science-fiction-news.asp?newsnum=2249 Festo AquaRay Robot] {{Webarchive|url=https://web.archive.org/web/20201124125555/http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=2249 |date=2020-11-24 }} Technovelgy, 20 April 2009. AquaJelly[http://www.engineeringtv.com/video/The-AquaJelly-Robotic-Jellyfish The AquaJelly Robotic Jellyfish from Festo] {{Webarchive|url=https://web.archive.org/web/20150924000817/http://www.engineeringtv.com/video/The-AquaJelly-Robotic-Jellyfish |date=2015-09-24 }} Engineering TV, 12 July 2012. and AiraCuda,[http://www.theengineer.co.uk/in-depth/analysis/lightweight-robots-festos-flying-circus/1009421.article Lightweight robots: Festo's flying circus] {{Webarchive|url=https://web.archive.org/web/20150919071715/http://www.theengineer.co.uk/in-depth/analysis/lightweight-robots-festos-flying-circus/1009421.article |date=2015-09-19 }} The Engineer, 18 July 2011. respectively emulating the locomotion of manta rays, jellyfish and barracuda.
In 2004, Hugh Herr at MIT prototyped a biomechatronic robotic fish with a living actuator by surgically transplanting muscles from frog legs to the robot and then making the robot swim by pulsing the muscle fibers with electricity.{{cite journal | last1 = Huge Herr | first1 = D. Robert G | title = A Swimming Robot Actuated by Living Muscle Tissue | journal = Journal of NeuroEngineering and Rehabilitation | volume = 1 | issue = 1| page = 6 | doi = 10.1186/1743-0003-1-6 | pmc=544953 | pmid=15679914 | date=October 2004 | doi-access = free }}[http://science.howstuffworks.com/biomechatronics4.htm How Biomechatronics Works] {{Webarchive|url=https://web.archive.org/web/20201205000258/http://science.howstuffworks.com/biomechatronics4.htm |date=2020-12-05 }} HowStuffWorks/ Retrieved 22 November 2012.
Robotic fish offer some research advantages, such as the ability to examine part of a fish design in isolation from the rest, and variance of a single parameter, such as flexibility or direction. Researchers can directly measure forces more easily than in live fish. "Robotic devices also facilitate three-dimensional kinematic studies and correlated hydrodynamic analyses, as the location of the locomotor surface can be known accurately. And, individual components of a natural motion (such as outstroke vs. instroke of a flapping appendage) can be programmed separately, which is certainly difficult to achieve when working with a live animal."{{cite journal | last1 = Lauder | first1 = G. V. | year = 2011 | title = Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them | url = http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Lauder.Exp.Fluids.2011.pdf | journal = Experiments in Fluids | volume = 51 | issue = 1 | pages = 23–35 | doi = 10.1007/s00348-009-0765-8 | bibcode = 2011ExFl...51...23L | s2cid = 890431 | access-date = 2012-11-20 | archive-date = 2019-12-06 | archive-url = https://web.archive.org/web/20191206114306/http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Lauder.Exp.Fluids.2011.pdf | url-status = live }}
{{clear}}
See also
References
{{reflist|33em}}
Further reading
{{refbegin|2}}
- {{cite journal | last1 = Blake | first1 = Robert William | year = 2004 | title = Fish functional design and swimming performance | journal = Journal of Fish Biology | volume = 65 | issue = 5| pages = 1193–1222 | doi = 10.1111/j.0022-1112.2004.00568.x | bibcode = 2004JFBio..65.1193B }}
- Blake, Robert William (1983) [https://books.google.com/books?id=M7E8AAAAIAAJ Fish Locomotion] {{Webarchive|url=https://web.archive.org/web/20231216100000/https://books.google.com/books?hl=en&lr=&id=M7E8AAAAIAAJ |date=2023-12-16 }} CUP Archive. {{ISBN|9780521243032}}.
- {{cite journal | last1 = Breder | first1 = CM | year = 1926 | title = The locomotion of fishes | journal = Zoologica | volume = 4 | pages = 159–297 }}
- {{cite journal | last1 = Fish | first1 = FE | last2 = Peacock | first2 = JE | last3 = Rohr | first3 = JJ | year = 2002 | title = Stabilization Mechanism in Swimming Odontocete Cetaceans by Phased Movements | url = http://apps.dtic.mil/dtic/tr/fulltext/u2/a445907.pdf | journal = Marine Mammal Science | volume = 19 | issue = 3 | pages = 515–528 | doi = 10.1111/j.1748-7692.2003.tb01318.x | access-date = 2012-11-23 | archive-date = 2017-02-28 | archive-url = https://web.archive.org/web/20170228064009/http://www.dtic.mil/dtic/tr/fulltext/u2/a445907.pdf | url-status = live }}
- {{cite journal | last1 = Hawkins | first1 = JD | last2 = Sepulveda | first2 = CA | last3 = Graham | first3 = JB | last4 = Dickson | first4 = KA | year = 2003 | title = Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) II. Kinematics | journal = The Journal of Experimental Biology | volume = 206 | issue = 16| pages = 2749–2758 | doi=10.1242/jeb.00496| pmid = 12847120 | doi-access = free }}
- {{cite journal | last1 = Lauder | first1 = GV | last2 = Drucker | first2 = EG | year = 2004 | title = Morphology and experimental hydrodynamics of fish fin control surfaces | url = http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Lauder.Drucker.2004.pdf | journal = Journal of Oceanic Engineering | volume = 29 | issue = 3 | pages = 556–571 | doi = 10.1109/joe.2004.833219 | bibcode = 2004IJOE...29..556L | s2cid = 36207755 | access-date = 2012-12-03 | archive-date = 2020-10-03 | archive-url = https://web.archive.org/web/20201003183836/http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Lauder.Drucker.2004.pdf | url-status = live }}
- {{cite journal | last1 = Lauder | first1 = GV | last2 = Madden | first2 = PGA | year = 2007 | title = Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins | url = http://www.mor-fin.com/Science-related-links_files/Fish%20locomotion-%20kinematics%20and%20hydrodynamics%20of%20flexible%20foil-like%20fins%20George%20V.%20Lauder%20%C3%86%20Peter%20G.%20A.%20Madden.pdf | journal = Experiments in Fluids | volume = 43 | issue = 5 | pages = 641–653 | doi = 10.1007/s00348-007-0357-4 | bibcode = 2007ExFl...43..641L | s2cid = 4998727 | url-status = dead | archive-url = https://web.archive.org/web/20121224203303/http://www.mor-fin.com/Science-related-links_files/Fish%20locomotion-%20kinematics%20and%20hydrodynamics%20of%20flexible%20foil-like%20fins%20George%20V.%20Lauder%20%C3%86%20Peter%20G.%20A.%20Madden.pdf | archive-date = 2012-12-24 }}
- {{cite journal | last1 = Standen | first1 = EM | year = 2009 | title = Muscle activity and hydrodynamic function of pelvic fins in trout (Oncorhynchus mykiss) | journal = The Journal of Experimental Biology | volume = 213 | issue = 5| pages = 831–841 | doi = 10.1242/jeb.033084 | pmid=20154199| doi-access = free }}
- Tangorra JL, CEsposito CJ and Lauder GV (2009) [http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Tangorra.Esposito.Lauder.IROS2009.pdf "Biorobotic fins for investigations of fish locomotion"] {{Webarchive|url=https://web.archive.org/web/20110401150423/http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Tangorra.Esposito.Lauder.IROS2009.pdf |date=2011-04-01 }} In: Intelligent Robots and Systems, pages: 2120–2125. E-{{ISBN|978-1-4244-3804-4}}.
- Tu X and Terzopoulos D (1994) [http://kulino.ninehub.com/file.php/1/nhrestore/1/Jurnal_dan_Artikel_Ilmiah/KecerdasanBuatan/sig94.pdf "Artificial fishes: Physics, locomotion, perception, behavior"]{{dead link|date=September 2017 |bot=InternetArchiveBot |fix-attempted=yes }} In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages 43–50. {{ISBN|0-89791-667-0}}. {{doi|10.1145/192161.192170}}
- {{cite journal | last1 = Weihs | first1 = Daniel | year = 2002 | title = Stability versus maneuverability in aquatic locomotion | journal = Integrated and Computational Biology | volume = 42 | issue = 1| pages = 127–134 | doi=10.1093/icb/42.1.127| pmid = 21708701 | doi-access = free }}
{{refend}}
External links
{{externalimage
|float=center
|width=320px
|video1=[https://www.youtube.com/watch?v=z-XI9MrU1iM Robotic fish to monitor pollution in harbours] YouTube
|video2=[https://www.youtube.com/watch?v=cFxbjy6jvp0 Robotic Fish] YouTube
|video3=[https://www.youtube.com/watch?v=eO9oseiCTdk Robot Fish] YouTube
|video4=[https://www.youtube.com/watch?v=S-8WN1bnM9k&feature=fvwrel Robotic Shark] YouTube
|video5=[https://www.youtube.com/watch?v=SH2ylhHktcg Evolution of the Surfboard Fin ] – YouTube
}}
- [http://www.earthlife.net/fish/locomotion.html Locomotion in Fish] Earthlife.
- [http://www.societyofrobots.com/mechanics_FEA.shtml Computational fluid dynamics tutorial] Many examples and images, with references to robotic fish.
- [http://www.zoology.ubc.ca/labs/biomaterials/fishskin.html Fish Skin Research] University of British Columbia.
- [http://www.economist.com/node/12494717 A fin-tuned design] The Economist, 19 November 2008.
{{fins, limbs and wings}}