gallium(III) oxide

{{chembox

| Watchedfields = changed

| verifiedrevid = 476994683

| Name = Gallium(III) trioxide

| ImageFile1 = Gallium(III) oxide crystal.jpg

| ImageCaption1 =β-Ga2O3 crystal

| ImageFile2 =Kristallstruktur Galliumoxid.png

| ImageCaption2 = Crystal structure of β-Ga2O3

| OtherNames = gallium trioxide, gallium sesquioxide

|Section1={{Chembox Identifiers

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 139522

| EINECS = 234-691-7

| InChI = 1/2Ga.3O/rGa2O3/c3-1-5-2-4

| SMILES = O=[Ga]O[Ga]=O

| InChIKey = QZQVBEXLDFYHSR-OGCFUIRMAC

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/2Ga.3O

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = QZQVBEXLDFYHSR-UHFFFAOYSA-N

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 12024-21-4

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = 46F059V66A

| PubChem = 5139834

| RTECS = LW9650000

}}

|Section2={{Chembox Properties

| Formula = Ga2O3

| MolarMass = 187.444 g/mol

| Appearance = white crystalline powder

| Density =

| Solubility = insoluble

| BandGap =

| MeltingPtC = 1725

| MeltingPt_ref = Patnaik, Pradyot (2002) Handbook of Inorganic Chemicals. McGraw-Hill. {{ISBN|0-07-049439-8}}.

| BoilingPt =

| SolubleOther = soluble in most acids

}}

|Section3={{Chembox Structure

| MolShape =

| Coordination =

| CrystalStruct = Monoclinic, mS20, space group = C2/m, No. 12

| LattConst_a = 1.2232 nm

| LattConst_b = 0.3041 nm

| LattConst_c = 0.5801 nm

| LattConst_alpha = 90

| LattConst_beta = 103.73

| LattConst_gamma = 90

| UnitCellFormulas = 4

| Structure_ref = {{cite journal |doi=10.1016/0022-4596(83)90222-0 |title=Oxyde β-Ga2O3: Champ de force, dilatation thermique, et rigidité anisotropes |lang=fr |journal=Journal of Solid State Chemistry |volume=49 |issue=1 |pages=107–117 |year=1983 |last1=Dohy |first1=D. |last2=Gavarri |first2=J. R. |bibcode=1983JSSCh..49..107D}}{{cite journal |last1=Geller |first1=S. |title=Crystal Structure of β-Ga2O3 |journal=The Journal of Chemical Physics |date=1 September 1960 |volume=33 |issue=3 |pages=676–684 |doi=10.1063/1.1731237 |bibcode=1960JChPh..33..676G }}

| LattConst_Comment = β-phase

}}

|Section5={{Chembox Thermochemistry

| Thermochemistry_ref={{RubberBible92nd|pages=5.20, 6.157}}

| DeltaHfus = 100 kJ/mol

| DeltaHf = −1089.1 kJ/mol

| Entropy = 85.0 J/(mol·K)

| DeltaGf = −998.3 kJ/mol

| HeatCapacity = 92.1 J/(mol·K)

}}

|Section7={{Chembox Hazards

}}

}}

Gallium(III) oxide is an inorganic compound and ultra-wide-bandgap semiconductor with the formula Ga2O3. It is actively studied for applications in power electronics, phosphors, and gas sensing.{{Cite journal |last1=Lin |first1=Jianhua |last2=Zhou |first2=Liuyan |last3=Shen |first3=Yuyu |last4=Fu |first4=Jie |last5=Chen |first5=Yanling |last6=Lei |first6=Lei |last7=Ye |first7=Renguang |last8=Shen |first8=Yang |last9=Deng |first9=Degang |last10=Xu |first10=Shiqing |date=2022-12-10 |title=[Zn2+-Ge4+] co-substitutes [Ga3+-Ga3+] to coordinately broaden the near-infrared emission of Cr3+ in Ga2O3 phosphors |journal=Physical Chemistry Chemical Physics |volume=25 |issue=3 |pages=2090–2097 |doi=10.1039/D2CP04737C |pmid=36562283 |s2cid=254561209 }}{{Cite journal |last1=Liu |first1=Zhifu |last2=Yamazaki |first2=Toshinari |last3=Shen |first3=Yanbai |last4=Kikuta |first4=Toshio |last5=Nakatani |first5=Noriyuki |last6=Li |first6=Yongxiang |date=2008-02-22 |title=O2 and CO sensing of Ga2O3 multiple nanowire gas sensors |journal=Sensors and Actuators B: Chemical |volume=129 |issue=2 |pages=666–670 |doi=10.1016/j.snb.2007.09.055 }}{{Cite journal |last1=Green |first1=Andrew J. |last2=Speck |first2=James |last3=Xing |first3=Grace |last4=Moens |first4=Peter |last5=Allerstam |first5=Fredrik |last6=Gumaelius |first6=Krister |last7=Neyer |first7=Thomas |last8=Arias-Purdue |first8=Andrea |last9=Mehrotra |first9=Vivek |last10=Kuramata |first10=Akito |last11=Sasaki |first11=Kohei |last12=Watanabe |first12=Shinya |last13=Koshi |first13=Kimiyoshi |last14=Blevins |first14=John |last15=Bierwagen |first15=Oliver |date=2022-02-01 |title=β-Gallium oxide power electronics|journal=APL Materials |volume=10 |issue=2 |pages=029201 |doi=10.1063/5.0060327|bibcode=2022APLM...10b9201G |s2cid=246660179 |doi-access=free }} The compound has several polymorphs, of which the monoclinic β-phase is the most stable. The β-phase’s bandgap of 4.7–4.9 eV and large-area, native substrates make it a promising competitor to GaN and SiC-based power electronics applications and solar-blind UV photodetectors.{{cite journal |last1=Pavesi |first1=M. |year=2018 |title=ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors |journal=Materials Chemistry and Physics |volume=205 |pages=502–507 |doi=10.1016/j.matchemphys.2017.11.023}} The orthorhombic ĸ-Ga2O3 is the second most stable polymorph. The ĸ-phase has shown instability of subsurface doping density under thermal exposure.{{Cite journal |last1=Rajabi Kalvani |first1=Payam |last2=Parisini |first2=Antonella |last3=Sozzi |first3=Giovanna |last4=Borelli |first4=Carmine |last5=Mazzolini |first5=Piero |last6=Bierwagen |first6=Oliver |last7=Vantaggio |first7=Salvatore |last8=Egbo |first8=Kingsley |last9=Bosi |first9=Matteo |last10=Seravalli |first10=Luca |last11=Fornari |first11=Roberto |date=2023-10-04 |title=Interfacial Properties of the SnO/κ-Ga 2 O 3 p-n Heterojunction: A Case of Subsurface Doping Density Reduction via Thermal Treatment in κ-Ga 2 O 3 |journal=ACS Applied Materials & Interfaces |language=en |volume=15 |issue=39 |pages=45997–46009 |doi=10.1021/acsami.3c08841 |issn=1944-8244 |pmc=10561148 |pmid=37733937}} Ga2O3 exhibits reduced thermal conductivity and electron mobility by an order of magnitude compared to GaN and SiC, but is predicted to be significantly more cost-effective due to being the only wide-bandgap material capable of being grown from melt.{{Cite journal |last1=Reese |first1=Samantha B. |last2=Remo |first2=Timothy |last3=Green |first3=Johney |last4=Zakutayev |first4=Andriy |date=2019-04-17 |title=How Much Will Gallium Oxide Power Electronics Cost? |journal=Joule |volume=3 |issue=4 |pages=903–907 |doi=10.1016/j.joule.2019.01.011 |s2cid=127789383 |doi-access=free |bibcode=2019Joule...3..903R }}{{Cite journal |last1=Heinselman |first1=Karen N. |last2=Haven |first2=Drew |last3=Zakutayev |first3=Andriy |last4=Reese |first4=Samantha B. |date=2022-08-03 |title=Projected Cost of Gallium Oxide Wafers from Edge-Defined Film-Fed Crystal Growth |journal=Crystal Growth & Design |volume=22 |issue=8 |pages=4854–4863 |doi=10.1021/acs.cgd.2c00340 |doi-access=free |bibcode=2022CrGrD..22.4854H }} β-Ga2O3 is thought to be radiation-hard, which makes it promising for military and space applications.{{Cite journal |last1=Bauman |first1=D. A. |last2=Borodkin |first2=A. I. |last3=Petrenko |first3=A. A. |last4=Panov |first4=D. I. |last5=Kremleva |first5=A. V. |last6=Spiridonov |first6=V. A. |last7=Zakgeim |first7=D. A. |last8=Silnikov |first8=M. V. |last9=Odnoblyudov |first9=M. A. |last10=Romanov |first10=A. E. |last11=Bougrov |first11=V. E. |date=2021-03-01 |title=On improving the radiation resistance of gallium oxide for space applications |journal=Acta Astronautica |volume=180 |pages=125–129 |doi=10.1016/j.actaastro.2020.12.010 |bibcode=2021AcAau.180..125B |s2cid=230578016}}{{Cite book |year=2021 |title=Fundamental Studies and Modeling of Radiation Effects in beta-Gallium Oxide |url=https://apps.dtic.mil/sti/citations/trecms/AD1123735|author1=Pearton, Stephen J. |author2=Ren, Fan |author3=Law, Mark |author4=Mastro, Michael |publisher=Defense Threat Reduction Agency, U.S.}}

Preparation

Gallium trioxide is precipitated in hydrated form upon neutralization of acidic or basic solution of gallium salt. Also, it is formed on heating gallium in air or by thermally decomposing gallium nitrate at 200–250 °C.

Crystalline Ga2O3 can occur in five polymorphs, α, β, γ, δ, and ε. Of these polymorphs β-Ga2O3 is the most thermodynamically stable phase at standard temperature and pressureBailar, J; Emeléus, H; Nyholm, R; Trotman-Dickenson, A. F. (1973). Comprehensive Inorganic Chemistry. Vol. 1, p. 1091. while α-Ga2O3 is the most stable polymorph under high pressures.{{Cite journal |first=Yan-Mei |last=Ma |display-authors=etal |date=2008 |title=High-Pressure and High-Temperature Behaviour of Gallium Oxide |journal=Chinese Physics Letters |volume=25 |issue=5|pages=1603–1605 |doi=10.1088/0256-307X/25/5/022 |s2cid=250882992 }}

  • β-Ga2O3 epitaxial thin films can be deposited heteroepitaxially on substrates such as sapphire, GaN, SiC, and Si, as well as homoepitaxially. For example, ALD on sapphire substrates at temperatures between 190 °C and 550 °C have been demonstrated.{{cite journal | last1 = Rafie Borujeny | first1 = E. | last2 = Sendetskyi | first2 = O. | last3 = Fleischauer | first3 = M. D. | last4 = Cadien | first4 = K. C. | year = 2020 | title = Low Thermal Budget Heteroepitaxial Gallium Oxide Thin Films Enabled by Atomic Layer Deposition| journal = ACS Applied Materials & Interfaces | volume = 12 | issue = 39 | pages = 44225–44237 | doi = 10.1021/acsami.0c08477 | pmid = 32865966 | s2cid = 221403770 }} High-quality β-Ga2O3 films have also been grown using techniques such as MBE, HVPE, and MOVPE.{{Cite journal |last1=Green |first1=Andrew J. |last2=Speck |first2=James |last3=Xing |first3=Grace |last4=Moens |first4=Peter |last5=Allerstam |first5=Fredrik |last6=Gumaelius |first6=Krister |last7=Neyer |first7=Thomas |last8=Arias-Purdue |first8=Andrea |last9=Mehrotra |first9=Vivek |last10=Kuramata |first10=Akito |last11=Sasaki |first11=Kohei |last12=Watanabe |first12=Shinya |last13=Koshi |first13=Kimiyoshi |last14=Blevins |first14=John |last15=Bierwagen |first15=Oliver |date=2022-02-01 |title=β-Gallium oxide power electronics |journal=APL Materials |volume=10 |issue=2 |pages=029201 |doi=10.1063/5.0060327|bibcode=2022APLM...10b9201G |s2cid=246660179 |doi-access=free }} HVPE is preferred for vertical power semiconductor devices due to its fast growth rate.{{Cite journal |last1=Yang |first1=Duyoung |last2=Kim |first2=Byungsoo |last3=Eom |first3=Tae Hoon |last4=Park |first4=Yongjo |last5=Jang |first5=Ho Won |date=2022-03-01 |title=Epitaxial Growth of Alpha Gallium Oxide Thin Films on Sapphire Substrates for Electronic and Optoelectronic Devices: Progress and Perspective |journal=Electronic Materials Letters |volume=18 |issue=2 |pages=113–128 |doi=10.1007/s13391-021-00333-5 |bibcode=2022EML....18..113Y |s2cid=245773856 }} β-Ga2O3 epitaxial films grown by MOVPE exhibit higher electron mobilities and lower background carrier concentrations than those grown by other thin-film growth techniques.{{Cite journal |last1=Tsao |first1=J. Y. |last2=Chowdhury |first2=S. |last3=Hollis |first3=M. A. |last4=Jena |first4=D. |last5=Johnson |first5=N. M. |last6=Jones |first6=K. A. |last7=Kaplar |first7=R. J. |last8=Rajan |first8=S. |last9=Van de Walle |first9=C. G. |last10=Bellotti |first10=E. |last11=Chua |first11=C. L. |last12=Collazo |first12=R. |last13=Coltrin |first13=M. E. |last14=Cooper |first14=J. A. |last15=Evans |first15=K. R. |date=2018 |title=Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges |journal=Advanced Electronic Materials |volume=4 |issue=1 |pages=1600501 |doi=10.1002/aelm.201600501 |s2cid=38628999 |doi-access=free }}{{Cite journal |last1=Zhang |first1=Yuewei |last2=Alema |first2=Fikadu |last3=Mauze |first3=Akhil |last4=Koksaldi |first4=Onur S. |last5=Miller |first5=Ross |last6=Osinsky |first6=Andrei |last7=Speck |first7=James S. |date=2019-02-01 |title=MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature |journal=APL Materials |volume=7 |issue=2 |pages=022506 |doi=10.1063/1.5058059 |bibcode=2019APLM....7b2506Z |s2cid=104453229 |doi-access=free }}

Bulk substrates of β-Ga2O3 can be produced, which is one of the major advantages of this material system. Bulk substrates can be produced in multiple orientations and by multiple techniques.{{Cite journal |last=Galazka |first=Zbigniew |date=2022-01-21 |title=Growth of bulk β-Ga2O3 single crystals by the Czochralski method |journal=Journal of Applied Physics |volume=131 |issue=3 |pages=031103 |doi=10.1063/5.0076962 |bibcode=2022JAP...131c1103G |s2cid=246074647 |doi-access=free }}{{cite web |title=Substrates |website=Novel Crystal Technology, Inc. |date=12 July 2018 |url=https://www.novelcrystal.co.jp/eng/substrates/}}File:Czorchralski Gallium.png

  • α-Ga2O3 can be obtained by heating β-Ga2O3 at 65 kbar and 1100 °C. It has a corundum structure. The hydrated form can be prepared by decomposing precipitated and "aged" gallium hydroxide at 500 °C. Epitaxial thin films of α-Ga2O3 deposited on c-plane (0001), m-plane (10{{overline|1}}0), or a-plane (11{{overline|2}}0) sapphire substrates have been demonstrated.
  • γ-Ga2O3 is prepared by rapidly heating the hydroxide gel at 400–500 °C. A more crystalline form of this polymorph can be prepared directly from gallium metal by a solvothermal synthesis.{{cite journal|doi=10.1002/chem.201203359|pmid=23307528|title=Structures of Uncharacterised Polymorphs of Gallium Trioxide from Total Neutron Diffraction|journal=Chemistry: A European Journal|volume=19|issue=8|pages=2803–13|year=2013|last1=Playford|first1=Helen Y.|last2=Hannon|first2=Alex C.|last3=Barney|first3=Emma R.|last4=Walton|first4=Richard I.}}
  • δ-Ga2O3 is obtained by heating Ga(NO3)3 at 250 °C.{{Cite journal |last1=Li |first1=Liandi |last2=Wei |first2=Wei |last3=Behrens |first3=Malte |date=July 2012 |title=Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation |journal=Solid State Sciences |volume=14 |issue=7 |pages=971–981 |doi=10.1016/j.solidstatesciences.2012.04.037 |bibcode=2012SSSci..14..971L }}
  • ε-Ga2O3 is prepared by heating δ-Ga2O3 at 550 °C. Thin films of ε-Ga2O3 are deposited by means of metalorganic vapour-phase epitaxy using trimethylgallium and water on sapphire substrates at temperatures between 550 and 650 °C{{cite journal |doi=10.1016/j.jcrysgro.2016.03.013 |title=Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD |journal=Journal of Crystal Growth |volume=44 |pages=25–30 |year=2015 |last1=Boschi |first1=F. |last2=Bosi |first2=M. |last3=Berzina |first3=T. |last4=Buffagni |first4=E.|last5=Ferrari |first5=C. |last6=Fornari |first6=R.}}

Reactions

Gallium(III) trioxide is amphoteric.Ebbing, Darrell D.; Gammon, Steven D. (2010) General Chemistry, 9th ed., Thomson Brooks/Cole. {{ISBN|0538497521}} It reacts with alkali metal oxides at high temperature to form, e.g., NaGaO2, and with Mg, Zn, Co, Ni, Cu oxides to form spinels, e.g., MgGa2O4.Downs, Anthony John (ed.) (1993) The Chemistry of Aluminium, Gallium, Indium and Thallium. Springer. {{ISBN|075140103X}}

It dissolves in strong alkali to form a solution of the gallate ion, {{chem|Ga(OH)|4|-}}.

With HCl, it forms gallium trichloride GaCl3.Zuckerman, J J and Hagen, A P eds. (2009) Inorganic Reactions and Methods, the Formation of Bonds to Halogens (Part 2), Wiley-VCH Verlag GmbH, {{ISBN|9780470145395}}

: Ga2O3 + 6 HCl → 2 GaCl3 + 3 H2O

It can be reduced to gallium suboxide (gallium(I) oxide) Ga2O by H2.{{cite journal|title=Determination of Gallium in a Cerium Surrogate and in Drops from a Copper Collector by ICP as Model Studies for the Removal of Gallium from Plutonium|author1= Koch, H. F. |author2=Girard, L. A. |author3=Roundhill, D. M. |journal= Atomic Spectroscopy|year= 1999|volume= 20|issue= 1|page= 30}} or by reaction with gallium metal:Greenwood, N.N.; Emeleus, H. J. and Sharpe, A. G. (1963) "The chemistry of Gallium" in Advances in Inorganic Chemistry and Radiochemistry, Vol. 5, Elsevier, Academic Press

: Ga2O3 + 2 H2 → Ga2O + 2 H2O

: Ga2O3 + 4 Ga → 3 Ga2O

Structure

β-Ga2O3, with a melting point of 1900 °C, is the most stable crystalline modification. The oxide ions are in a distorted cubic closest packing arrangement, and the gallium (III) ions occupy distorted tetrahedral and octahedral sites, with Ga–O bond distances of 1.83 and 2.00 Å respectively.King, R. B. (1994) Encyclopedia of Inorganic Chemistry. Vol. 3. p. 1256. {{ISBN|978-0-470-86078-6}}.

α-Ga2O3 has the same structure (corundum) as α-Al2O3, wherein Ga ions are 6-coordinate.{{cite journal |doi=10.1111/j.1151-2916.1973.tb12471.x |title=Thermal Expansion of Alpha Ga2O3 |journal=Journal of the American Ceramic Society |volume=56 |issue=4 |pages=229 |year=1973 |last1=Eckert |first1=L. J. |last2=Bradt |first2=R. C. |author-link2=Richard C. Bradt}}{{cite journal |last1=Marezio |first1=M. |last2=Remeika |first2=J. P. |title=Bond Lengths in the α-Ga2O3 Structure and the High-Pressure Phase of Ga2−xFexO3 |journal=The Journal of Chemical Physics |date=1 March 1967 |volume=46 |issue=5 |pages=1862–1865 |doi=10.1063/1.1840945 }}

γ-Ga2O3 has a defect spinel structure similar to that of γ-Al2O3.{{Greenwood&Earnshaw|page=247}}

ε-Ga2O3 films deposited by metalorganic vapour-phase epitaxy show a columnar structure with orthorhombic crystal symmetry. Macroscopically, this structure is seen by X-ray crystallography as hexagonal close packed.{{cite journal|doi=10.1039/C7CE00123A|title=The real structure of ε-Ga2O3 and its relation to κ-phase|journal=CrystEngComm|volume=19|issue=11|pages=1509–1516|year=2017|last1=Cora|first1=I|doi-access=free|hdl=10831/67366|hdl-access=free}}

κ-Ga2O3 has an orthorhombic structure and forms with 120° twin domains, resulting in hexagonal symmetry which is often identified as ε-Ga2O3.{{Cite journal |last1=Fornari |first1=R. |last2=Pavesi |first2=M. |last3=Montedoro |first3=V. |last4=Klimm |first4=D. |last5=Mezzadri |first5=F. |last6=Cora |first6=I. |last7=Pécz |first7=B. |last8=Boschi |first8=F. |last9=Parisini |first9=A. |last10=Baraldi |first10=A. |last11=Ferrari |first11=C. |last12=Gombia |first12=E. |last13=Bosi |first13=M. |date=2017-11-01 |title=Thermal stability of ε-Ga2O3 polymorph |journal=Acta Materialia |volume=140 |pages=411–416 |doi=10.1016/j.actamat.2017.08.062 |bibcode=2017AcMat.140..411F }}

class="wikitable"

|+

!Phase of Ga2O3

!Figure

!Crystal structure name

α

|File:Alpha-ga2o3-crystal structure.png

|Rhombohedral

(Corundum)

β

|File:Kristallstruktur Galliumoxid.png

|Monoclinic

γ

|File:Gamma-ga2o3-crystal structure.png

|Cubic defect spinel

δ

|File:Delta-ga2o3-crystal structure.png

|Body-centered cubic bixbyite

ε

|File:Epsilon-ga2o3-crystal structure.png

|Hexagonal

κ (subgroup of ε phase){{Cite journal |last1=Spencer |first1=Joseph A. |last2=Mock |first2=Alyssa L. |last3=Jacobs |first3=Alan G. |last4=Schubert |first4=Mathias |last5=Zhang |first5=Yuhao |last6=Tadjer |first6=Marko J. |date=2022-03-01 |title=A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3 |journal=Applied Physics Reviews |volume=9 |issue=1 |pages=011315 |doi=10.1063/5.0078037|bibcode=2022ApPRv...9a1315S |s2cid=247259950 }}

|File:Kappa-ga2o3-crystal structure.png

|Orthorhombic

Electronic and thermal properties

{{empty section|date=February 2025}}

Applications

Gallium(III) oxide has been studied for usage as passive components in lasers,{{Cite journal |last1=Deng |first1=Huiyang |last2=Leedle |first2=Kenneth J. |last3=Miao |first3=Yu |last4=Black |first4=Dylan S. |last5=Urbanek |first5=Karel E. |last6=McNeur |first6=Joshua |last7=Kozák |first7=Martin |last8=Ceballos |first8=Andrew |last9=Hommelhoff |first9=Peter |last10=Solgaard |first10=Olav |last11=Byer |first11=Robert L. |last12=Harris |first12=James S. |date=April 2020 |title=Ga2O3-Based Optical Applications: Gallium Oxide for High-Power Optical Applications (Advanced Optical Materials 7/2020) |journal=Advanced Optical Materials |volume=8 |issue=7 |pages=2070026 |doi=10.1002/adom.202070026 |s2cid=216243413 |doi-access=free }} phosphors, and luminescent materials{{Cite journal |last1=Nogales |first1=E |last2=Méndez |first2=B |last3=Piqueras |first3=J |last4=García |first4=J A |date=2009-03-18 |title=Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices|journal=Nanotechnology |volume=20 |issue=11 |pages=115201 |doi=10.1088/0957-4484/20/11/115201 |pmid=19420434 |bibcode=2009Nanot..20k5201N |s2cid=23058882 |url=https://eprints.ucm.es/id/eprint/24274/1/MendezBianchi15.pdf }} as well as active components for gas sensors, power diodes,{{Cite journal |last1=Li |first1=Wenshen |last2=Nomoto |first2=Kazuki |last3=Hu |first3=Zongyang |last4=Jena |first4=Debdeep |last5=Xing |first5=Huili Grace |date=January 2020 |title=Field-Plated Ga2O3 Trench Schottky Barrier Diodes With a BV2/Ron,sp of up to 0.95 GW/cm2 |journal=IEEE Electron Device Letters |volume=41 |issue=1 |pages=107–110 |doi=10.1109/LED.2019.2953559 |s2cid=209696027 |doi-access=free }} and power transistors.{{Cite journal |last1=Xia |first1=Zhanbo |last2=Xue |first2=Hao |last3=Joishi |first3=Chandan |last4=Mcglone |first4=Joe |last5=Kalarickal |first5=Nidhin Kurian |last6=Sohel |first6=Shahadat H. |last7=Brenner |first7=Mark |last8=Arehart |first8=Aaron |last9=Ringel |first9=Steven |last10=Lodha |first10=Saurabh |last11=Lu |first11=Wu |last12=Rajan |first12=Siddharth |date=July 2019 |title=β-Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz |journal=IEEE Electron Device Letters |volume=40 |issue=7 |pages=1052–1055 |doi=10.1109/LED.2019.2920366 |bibcode=2019IEDL...40.1052X |s2cid=195439906 |doi-access=free }} Since the first publication in January 2012 by the National Institute of Information and Communications Technology, in collaboration with Tamura Co., Ltd. and Koha Co., Ltd. of the world's first single-crystal gallium oxide (Ga2O3) field-effect transistors, the predominant interest in gallium oxide is in the β-polymorph for power electronics.{{Cite journal |last1=Higashiwaki |first1=Masataka |last2=Sasaki |first2=Kohei |last3=Kuramata |first3=Akito |last4=Masui |first4=Takekazu |last5=Yamakoshi |first5=Shigenobu |date=2012-01-02 |title=Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates |journal=Applied Physics Letters |volume=100 |issue=1 |pages=013504 |doi=10.1063/1.3674287 |bibcode=2012ApPhL.100a3504H }}

Monoclinic β-Ga2O3 has shown increasing performance since 2012 approaching state of the art GaN and SiC power devices. β-Ga2O3 Schottky diodes have exceeded breakdown voltages of 2400 V. β-Ga2O3/NiOx p–n diodes have exhibited breakdown voltages over 1200 V.{{Cite journal |last1=Wang |first1=Chenlu |last2=Gong |first2=Hehe |last3=Lei |first3=Weina |last4=Cai |first4=Yuncong |last5=Hu |first5=Zhuangzhuang |last6=Xu |first6=Shengrui |last7=Liu |first7=Zhihong |last8=Feng |first8=Qian |last9=Zhou |first9=Hong |last10=Ye |first10=Jiandong |last11=Zhang |first11=Jincheng |last12=Zhang |first12=Rong |last13=Hao |first13=Yue |date=April 2021 |title=Demonstration of the p-NiOx/n-Ga2O3 Heterojunction Gate FETs and Diodes With BV2/Ron,sp Figures of Merit of 0.39 GW/cm2 and 1.38 GW/cm2 |journal=IEEE Electron Device Letters |volume=42 |issue=4 |pages=485–488 |doi=10.1109/LED.2021.3062851 |bibcode=2021IEDL...42..485W |s2cid=232372680 }} β-Ga2O3 MOSFETs have individually achieved figures of merits of  fT of 27 GHz, fMAX of 48 GHz,{{Cite arXiv |last1=Saha |first1=Chinmoy Nath |last2=Vaidya |first2=Abhishek |last3=Bhuiyan |first3=A. F. M. Anhar Uddin |last4=Meng |first4=Lingyu |last5=Zhao |first5=Hongping |last6=Singisetti |first6=Uttam |date=2022-11-02 |title=Beta-Ga2O3 MOSFETs with near 50 GHz fMAX and 5.4 MV/cm average breakdown field |class=cond-mat.mtrl-sci |eprint=2211.01088 }} and 5.4 MV/cm average breakdown field. This field exceeds that which is possible in SiC or GaN.

ε-Ga2O3 thin films deposited on sapphire show potential applications as solar-blind UV photodetector.

References

{{Reflist|30em}}

{{Gallium compounds}}

{{Oxides}}

{{oxygen compounds}}

{{Use dmy dates|date=March 2018}}

{{DEFAULTSORT:Gallium(Iii) Oxide}}

Category:Gallium compounds

Category:Sesquioxides